Skip to main content

Generation of Cell Lines Propagating Infectious Prions and the Isolation and Characterization of Cell-derived Exosomes

  • Protocol
Book cover Prion Protein Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 459))

Summary

Prion-propagating cell lines are an efficient and useful means for studying the cellular and molecular mechanisms implicated in prion disease. Use of cell-based models has lead to the finding that prion protein (PrPC) and PrPSc are released from cells in association with exosomes. Furthermore, exosomes have been shown to act as vehicles for infectivity, transferring PrPSc between cell lines and providing a mechanism for prion spread between tissues. As a role for exo-somes in prion disease is emerging, this chapter outlines a method for the generation of prion-infected cell lines and the isolation and characterization of PrPC- and PrPSc-containing exosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prusiner, S.B. (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542): 136–44.

    Article  CAS  PubMed  Google Scholar 

  2. Clarke, M.C. and D.A. Haig. (1970) Evidence for the multiplication of scrapie agent in cell culture. Nature 225(5227): 100–1.

    Article  CAS  PubMed  Google Scholar 

  3. Race, R.E., L.H. Fadness, and B. Chesebro. (1987) Characterization of scrapie infection in mouse neuroblastoma cells. J Gen Virol 68(5): 1391–9.

    Article  PubMed  Google Scholar 

  4. Bosque, P.J. and S.B. Prusiner. (2000) Cultured cell sublines highly susceptible to prion infection. J Virol 74(9): 4377–86.

    Article  CAS  PubMed  Google Scholar 

  5. Schatzl, H.M., et al. (1997) A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol 71(11): 8821–31.

    CAS  PubMed  Google Scholar 

  6. Vorberg, I., et al. (2004) Susceptibility of common fibroblast cell lines to transmissible spong-iform encephalopathy agents. J Infect Dis 189: 431–9.

    Article  CAS  PubMed  Google Scholar 

  7. Priola, S.A., et al. (1994) Prion protein and the scrapie agent: in vitro studies in infected neu-roblastoma cells. Infect Agents Dis 3(2–3): 54–8.

    CAS  PubMed  Google Scholar 

  8. Supattapone, S., et al. (2001) Branched polyamines cure prion-infected neuroblastoma cells. J Virol 75(7): 3453–61.

    Article  CAS  PubMed  Google Scholar 

  9. Fevrier, B., et al. (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 101(26): 9683–8.

    Article  CAS  PubMed  Google Scholar 

  10. Stoorvogel, W., et al. (2002) The biogenesis and functions of exosomes. Traffic 3(5): 321–30.

    Article  CAS  PubMed  Google Scholar 

  11. Denzer, K., et al. (2000) Follicular dendritic cells carry MHC class II-expressing microvesi-cles at their surface. J Immunol 165(3): 1259–65.

    CAS  PubMed  Google Scholar 

  12. Pisitkun, T., R.F. Shen, and M.A. Knepper. (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101(36): 13368–73.

    Article  CAS  PubMed  Google Scholar 

  13. Andre, F., et al. (2002) Tumor-derived exosomes: a new source of tumor rejection antigens. Vaccine 20(Suppl 4): A28–31.

    Article  CAS  PubMed  Google Scholar 

  14. Gastpar, R., et al. (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65(12): 5238–47.

    Article  CAS  PubMed  Google Scholar 

  15. Abusamra, A.J., et al. (2005) Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis. Blood Cells Mol Dis 35(2): 169–73.

    Article  CAS  PubMed  Google Scholar 

  16. Cho, J.A., et al. (2004) Exosomes: a new delivery system for tumor antigens in cancer immu-notherapy. Int J Cancer 114(4): 613–22.

    Article  Google Scholar 

  17. Hee Kim, S., et al. (2005) Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive. Mol Ther 13(2): 289–300.

    Article  Google Scholar 

  18. Skokos, D., et al. (2001) Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J Immunol 166(2): 868–76.

    CAS  PubMed  Google Scholar 

  19. Wolfers, J., et al. (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7(3): 297–303.

    Article  CAS  PubMed  Google Scholar 

  20. Skokos, D., et al. (2003) Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol 170(6): 3037–45.

    CAS  PubMed  Google Scholar 

  21. Van Niel, G., et al. (2003) Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut 52(12): 1690–7.

    Article  PubMed  Google Scholar 

  22. Kim, S.H., et al. (2005) Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J Immunol 174(10): 6440–8.

    CAS  PubMed  Google Scholar 

  23. Wiley, R.D. and S. Gummuluru. (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 103(3): 738–43.

    Article  CAS  PubMed  Google Scholar 

  24. Ecroyd, H., et al. (2006) An epididymal form of cauxin, a carboxylesterase-like enzyme, is present and active in mammalian male reproductive fluids. Biol Reprod 74(2): 439–447.

    Article  CAS  PubMed  Google Scholar 

  25. Ecroyd, H., et al. (2004) Compartmentalization of prion isoforms within the reproductive tract of the ram. Biol Reprod 71(3): 993–1001.

    Article  CAS  PubMed  Google Scholar 

  26. Gatti, J.L., et al. (2002) Prion protein is secreted in soluble forms in the epididymal fluid and proteolytically processed and transported in seminal plasma. Biol Reprod 67(2): 393–400.

    Article  CAS  PubMed  Google Scholar 

  27. Robertson, C., et al. (2006) Cellular prion protein is released on exosomes from activated platelets. Blood 107(10): 3907–11.

    Article  CAS  PubMed  Google Scholar 

  28. Faure, J., et al. (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31(4): 642–8.

    Article  CAS  PubMed  Google Scholar 

  29. Vella, L.J., et al. (2007) Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 211(5): 582–90.

    Article  CAS  PubMed  Google Scholar 

  30. Aguzzi, A. (2003) Prions and the immune system: a journey through gut, spleen, and nerves. Adv Immunol 81: 123–71.

    Article  CAS  PubMed  Google Scholar 

  31. Brown, K.L., et al. (1999) Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nat Med 5(11): 1308–12.

    Article  CAS  PubMed  Google Scholar 

  32. Kitamoto, T., et al. (1991) Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt-Jakob disease. J Virol 65(11): 6292–5.

    CAS  PubMed  Google Scholar 

  33. Andreoletti, O., et al. (2000) Early accumulation of PrP(Sc) in gut-associated lymphoid and nervous tissues of susceptible sheep from a Romanov flock with natural scrapie. J Gen Virol 81(12): 3115–26.

    CAS  PubMed  Google Scholar 

  34. van Keulen, L.J., et al. (2000) Pathogenesis of natural scrapie in sheep. Arch Virol Suppl (16): 57–71.

    Google Scholar 

  35. McBride, P.A., et al. (1992) PrP protein is associated with follicular dendritic cells of spleens and lymph nodes in uninfected and scrapie-infected mice. J Pathol 168(4): 413–8.

    Article  CAS  PubMed  Google Scholar 

  36. Clarke, M.C. and R.H. Kimberlin. (1984) Pathogenesis of mouse scrapie: distribution of agent in the pulp and stroma of infected spleens. Vet Microbiol 9(3): 215–25.

    Article  CAS  PubMed  Google Scholar 

  37. Kimberlin, R.H. and C.A. Walker. (1989) Pathogenesis of scrapie in mice after intragastric infection. Virus Res 12(3): 213–20.

    Article  CAS  PubMed  Google Scholar 

  38. Beekes, M. and P.A. McBride. (2000) Early accumulation of pathological PrP in the enteric nervous system and gut-associated lymphoid tissue of hamsters orally infected with scrapie. Neurosci Lett 278(3): 181–4.

    Article  CAS  PubMed  Google Scholar 

  39. Baldauf, E., M. Beekes, and H. Diringer. (1997) Evidence for an alternative direct route of access for the scrapie agent to the brain bypassing the spinal cord. J Gen Virol 78(5): 1187–97.

    CAS  PubMed  Google Scholar 

  40. Butler, D.A., et al. (1988) Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. J Virol 62(5): 1558–64.

    CAS  PubMed  Google Scholar 

  41. Rubenstein, R., R.I. Carp, and S.M. Callahan. (1984) In vitro replication of scrapie agent in a neuronal model: infection of PC12 cells. J Gen Virol 65(12): 2191–8.

    Article  PubMed  Google Scholar 

  42. Vilette, D., et al. (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci U S A 98(7): 4055–9.

    Article  CAS  PubMed  Google Scholar 

  43. Clarke, M.C. and G.C. Millson. (1976) Infection of a cell line of mouse L fibroblasts with scrapie agent. Nature 261(5556): 144–5.

    Article  CAS  PubMed  Google Scholar 

  44. Gibson, P.E., T.M. Bell, and E.J. Field. (1972) Failure of the scrapie agent to replicate in L5178Y mouse leukaemic cells. Res Vet Sci 13(1): 95–6.

    CAS  PubMed  Google Scholar 

  45. Nishida, N., et al. (2000) Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein. J Virol 74(1): 320–5.

    Article  CAS  PubMed  Google Scholar 

  46. Arjona, A., et al. (2004) Two Creutzfeldt-Jakob disease agents reproduce prion protein-independent identities in cell cultures. Proc Natl Acad Sci U S A 101(23): 8768–73.

    Article  CAS  PubMed  Google Scholar 

  47. Raposo, G., et al. (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3): 1161–72.

    Article  CAS  PubMed  Google Scholar 

  48. Thery, C., et al. (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147(3): 599–610.

    Article  CAS  PubMed  Google Scholar 

  49. Clayton, A., et al. (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 247(1–2): 163–74.

    Article  CAS  PubMed  Google Scholar 

  50. Cheruvanky, A., et al. (2007) Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol 292(5): F1657–61.

    Article  CAS  PubMed  Google Scholar 

  51. van Niel, G. and M. Heyman. (2002) The epithelial cell cytoskeleton and intracellular trafficking. II. Intestinal epithelial cell exosomes: perspectives on their structure and function. Am J Physiol Gastrointest Liver Physiol 283(2): G251–5.

    PubMed  Google Scholar 

  52. Thery, C., et al. (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166(12): 7309–18.

    CAS  PubMed  Google Scholar 

  53. Hegmans, J.P., et al. (2004) Proteomic analysis of exosomes secreted by human mesothelioma cells. Am J Pathol 164(5): 1807–15.

    Article  CAS  PubMed  Google Scholar 

  54. Mears, R., et al. (2004) Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics 4(12): 4019–31.

    Article  CAS  PubMed  Google Scholar 

  55. Bard, M.P., et al. (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31(1): 114–21.

    Article  CAS  PubMed  Google Scholar 

  56. Wubbolts, R., et al. (2003) Proteomic and biochemical analyses of human B cell-derived exo-somes. Potential implications for their function and multivesicular body formation. J Biol Chem 278(13): 10963–72.

    Article  CAS  PubMed  Google Scholar 

  57. Segura, E., S. Amigorena, and C. Thery. (2005) Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis 35(2): 89–93.

    Article  CAS  PubMed  Google Scholar 

  58. Amzallag, N., et al. (2004) TSAP6 facilitates the secretion of translationally controlled tumor pro-tein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279(44): 46104–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Vella, L.J., Hill, A.F. (2008). Generation of Cell Lines Propagating Infectious Prions and the Isolation and Characterization of Cell-derived Exosomes. In: Hill, A.F. (eds) Prion Protein Protocols. Methods in Molecular Biology™, vol 459. Humana Press. https://doi.org/10.1007/978-1-59745-234-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-234-2_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-897-3

  • Online ISBN: 978-1-59745-234-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics