Skip to main content

Investigation of PrPC Metabolism and Function in Live Cells

Methods for Studying Individual Cells and Cell Populations

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 459))

Summary

Prion protein (PrP)C expression levels and protein localization are known to be affected by factors such as metal ions and oxidative stress. By the development of a green fluorescent protein (GFP)-PrPC fusion protein, the movement of PrP can be followed in real time. Furthermore, alterations in cellular metabolism can be detected while cells are still viable. The internalization response of PrP to 20 μM manganese (Mn) in divalent metal ion-depleted media is used to demonstrate the movement of GFP-tagged proteins in live cells and real tim0e. A live cell microtiter plate assay shows that PrP null cells are less capable of dealing with Mn-induced oxidative stress. In addition, this chapter outlines several complementary techniques for studying live cells and GFP fusion proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nunziante, M. Gilch, S. Schatzl, HM. (2003) Essential role of the prion protein N-terminus in subcellular trafficking and half-life of PrPc. Journal of Biological Chemistry 278(6), 3726–3734.

    Article  CAS  PubMed  Google Scholar 

  2. Winklhofer, KF., Heske, J., Heller, U., Reintjes, A., Muranyi, W., Moarefi, I., Tatzelt, J. (2003) Determinants of the in vivo folding of the prion protein: a bipartate function of helix 1 in folding and aggregation. Journal of Biological Chemistry 278(17), 14961–14970.

    Article  CAS  PubMed  Google Scholar 

  3. Hornshaw, MP., McDermott, JR., Candy, JM., Lakey, JH. (1995) Copper binding to the N-ter-minal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides. Biochemical and Biophysical Research Communications 214(3), 993–999.

    Article  CAS  PubMed  Google Scholar 

  4. Brown, DR., Qin, K., Herms, JW., Madlung, A., Manson, J., Strome, R., Fraser, PE., Kruck, T., Bohlen, A., Schulz-Schaeffer, W., Giese, A., Westaway, D., Kretzschmar, H. (1997) The cellular prion protein binds copper in vivo. Nature 390, 684–687.

    Article  CAS  PubMed  Google Scholar 

  5. Hasnain, SS., Murphy, LM., Strange, RW., Grossmann, JG., Clarke, AR., Jackson, GS., Collinge, J. (2001) XAFS study of the high-affinity copper-binding site of human PrP91–231 and its low-resolution structure in solution. Journal of Molecular Biology 311, 467–473.

    Article  CAS  PubMed  Google Scholar 

  6. Jackson, GS., Murray, I., Hosszu, LLP., Gibbs, N., Waltho, JP., Clarke, AR., Collinge, J. (2001) Location and properties of metal-binding sites on the human prion protein. Proceedings of the National Academy of Sciences USA. 98(15), 8531–8535.

    Article  CAS  Google Scholar 

  7. Pauly, PC., Harris, DA. (1998) Copper stimulates endocytosis of the prion protein. Journal of Biological Chemistry 273(50), 33107–33110.

    Article  CAS  PubMed  Google Scholar 

  8. Lee, KS., Magalhães, AC., Zanata, SM., Brentani, RR., Martins, VR. Prado, MA. (2001) Internalisation of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells. Journal of Neurochemistry 79(1), 79–87.

    Article  CAS  PubMed  Google Scholar 

  9. Sunyach, C., Jen, A., Deng, J., Fitzgerald, KT., Frobert, Y. , Grassi, J., McCaffrey, MW., Morris, R. (2003) The mechanism of internalisation of glycosylphosphatidylinositol-anchored prion protein. EMBO Journal 22(14), 3591–3601.

    Article  CAS  PubMed  Google Scholar 

  10. Haigh, CL., Edwards, KE., Brown, DR. (2005) Copper binding is the governing determinant of prion protein turnover. Molecular and Cellular Neuroscience 30, 186–96.

    Article  CAS  PubMed  Google Scholar 

  11. Brown, DR., Schmidt, B., Kretzschmar, HA. (1998) Effects of copper on survival of prion protein knockout neurons and glia. Journal of Neurochemistry 70, 1686–93.

    Article  CAS  PubMed  Google Scholar 

  12. Wong, BS., Brown, DR., Pan, T., Whitemann, M., Liu, T., Bu, X., Li, R., Gambetti, P., Olesik, J., Rubenstein, R., Sy, MS. (2001) Oxidative impairment in scrapie-infected mice is associated with brain metal perturbations and altered anti-oxidant activities. Journal of Neurochemistry 79, 689–698.

    Article  CAS  PubMed  Google Scholar 

  13. Thackray, AM., Knight, R., Haswell, SJ., Bujdoso, R., Brown, DR. (2002) Metal imbalance and compromised anti-oxidant function are early changes in prion disease. Biochemical Journal 362, 253–258.

    Article  CAS  PubMed  Google Scholar 

  14. Brown, DR., Besinger, A. (1998) Prion protein expression and superoxide dismutase activity. Biochemical Journal 334, 423–429.

    CAS  PubMed  Google Scholar 

  15. Brown, DR., Clive, C., Haswell, SJ. (2001) Antioxidant activity related to copper binding of native prion protein. Journal of Neurochemistry 76, 69–76.

    Article  CAS  PubMed  Google Scholar 

  16. Brown, DR., Hafiz, F., Glasssmith, LL., Wong, BS., Jones, IM., Clive, C., Haswell, SJ. (2000) Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO Journal 19(6), 1180–1186.

    Article  CAS  PubMed  Google Scholar 

  17. Holme, A., Daniels, M., Sassoon, J., Brown, DR. A novel method of generating neuronal cell lines from gene-knockout mice to study prion protein membrane orientation. European Journal of Neuroscience 18, 571–579.

    Google Scholar 

  18. Dawson, RM., Elliott, DC., Elliott, WH., Jones, KM. (1994) Data for Biochemical Research (third edition). Oxford Scientific Publications, Oxford, UK.

    Google Scholar 

  19. Martin, BD., Schoenhard, JA., Sugden, KD. (1998) Hypervalent chromium mimics reactive oxygen species as measured by the oxidant-sensitive dyes 2′,7′-dichlorofluorescin and dihydrorhodamine. Chemical Research and Toxicology 11(12), 1402–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Biochemical and Biological Sciences Research Council (UK).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Haigh, C.L., Brown, D.R. (2008). Investigation of PrPC Metabolism and Function in Live Cells. In: Hill, A.F. (eds) Prion Protein Protocols. Methods in Molecular Biology™, vol 459. Humana Press. https://doi.org/10.1007/978-1-59745-234-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-234-2_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-897-3

  • Online ISBN: 978-1-59745-234-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics