Skip to main content

Cell Culture Models to Unravel Prion Protein Function and Aberrancies in Prion Diseases

  • Protocol
Prion Protein Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 459))

Summary

From an early stage of prion research, tissue cultures that could support and propagate the scrapie agent were sought after. The earliest attempts were explants from brains of infected mice, and their growth and morphological characteristics were compared with those from uninfected mice (1). Using the explant technique, several investigators reported increased cell growth in cultures established from scrapie-sick brain compared with cultures from normal mice (1, 2). These are odd findings in the light of the massive neuronal cell death known to occur in scrapie-infected brains; however, the cell types responsible for the increased cell growth in the scrapie-explants most probably were not neuronal. The first successful cell culture established in this way, in which the scrapie agent was serially and continuously passaged beyond the initial explant, was in the scrapie mouse brain culture (3), which is still used today (4, 5). This chapter describes the generation and use of chronically prion-infected cell lines as cell culture models of prion diseases. These cell lines have been crucial for the current understanding of the cell biology of both the normal (PrPC) and the pathogenic isoform (PrPSc) of the prion protein. They also have been useful in the development of antiprion drugs, prospectively used for therapy of prion diseases, and they offer an alternative approach for transmission/infectivity assays normally performed by mouse bioassay. Cell culture models also have been used to study prion-induced cytopathological changes, which could explain the typical spongiform neurodegeneration in prion diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Field, EJ, Windsor, GD (1965) Cultural characters of scrapie mouse brain. Res Vet Sci; 35:130–132.

    Google Scholar 

  2. Caspary, EA, Bell, TM (1971) Growth potential of scrapie mouse brain in vitro. Nature; 229:269–270.

    Article  CAS  PubMed  Google Scholar 

  3. Clarke, MC, Haig, DA (1970) Evidence for the multiplication of scrapie agent in cell culture. Nature; 225:100–101.

    Article  CAS  PubMed  Google Scholar 

  4. Bate, C, Salmona, M, Diomede, L, Williams, A (2004) Squalestatin cures prion-infected neurons and protects against prion neurotoxicity. J Biol Chem; 279:14983–14990.

    Article  CAS  PubMed  Google Scholar 

  5. Birkett, CR, Hennion, RM, Bembridge, DA, Clarke, MC, Chree, A, Bruce, ME, Bostock, CJ (2001) Scrapie strains maintain biological phenotypes on propagation in a cell line in culture. EMBO J; 20:3351–3358.

    Article  CAS  PubMed  Google Scholar 

  6. Haig, DA, Pattison, IH (1967) In vitro growth of pieces of brain from scrapie-affected mice. J Pathol Bacteriol; 93:724–727.

    Article  CAS  PubMed  Google Scholar 

  7. Race, R (1991) The scrapie agent in vitro. Curr Top Microbiol Immunol; 172:181–193.

    CAS  PubMed  Google Scholar 

  8. Butler, DA, Scott, MR, Bockman, JM, Borchelt, DR, Taraboulos, A, Hsiao, KK, Kingsbury, DT, Prusiner, SB (1988) Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. J Virol; 62:1558–1564.

    CAS  PubMed  Google Scholar 

  9. Race, RE, Fadness, LH, Chesebro, B (1987) Characterization of scrapie infection in mouse neuroblastoma cells. J Gen Virol; 68:1391–1399.

    Article  PubMed  Google Scholar 

  10. Markovits, P, Dautheville, C, Dormont, D, Dianoux, L, Latarjet, R (1983) In vitro propagation of the scrapie agent. I. Transformation of mouse glia and neuroblastoma cells after infection with the mouse-adapted scrapie strain c-506. Acta Neuropathol (Berl); 60:75–80.

    Article  CAS  Google Scholar 

  11. Östlund, P, Lindegren, H, Pettersson, C, Bedecs, K (2001) Up-regulation of functionally impaired insulin-like growth factor-1 receptor in scrapie-infected neuroblastoma cells. J Biol Chem; 276:36110–36115.

    Article  PubMed  Google Scholar 

  12. Nishida, N, Harris, DA, Vilette, D, Laude, H, Frobert, Y, Grassi, J, Casanova, D, Milhavet, O, Lehmann, S (2000) Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein. J Virol; 74:320–325.

    Article  CAS  PubMed  Google Scholar 

  13. Arjona, A, Simarro, L, Islinger, F, Nishida, N, Manuelidis, L (2004) Two Creutzfeldt-Jakob disease agents reproduce prion protein-independent identities in cell cultures. Proc Natl Acad Sci U S A; 101:8768–8773.

    Article  CAS  PubMed  Google Scholar 

  14. Ladogana, A, Liu, Q, Xi, YG, Pocchiari, M (1995) Proteinase-resistant protein in human neuroblastoma cells infected with brain material from Creutzfeldt-Jakob patient. Lancet; 345:594–595.

    Article  CAS  PubMed  Google Scholar 

  15. Schatzl, HM, Laszlo, L, Holtzman, DM, Tatzelt, J, DeArmond, SJ, Weiner, RI, Mobley, WC, Prusiner, SB (1997) A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol; 71:8821–8831.

    CAS  PubMed  Google Scholar 

  16. Milhavet, O, McMahon, HE, Rachidi, W, Nishida, N, Katamine, S, Mange, A, Arlotto, M, Casanova, D, Riondel, J, Favier, A, Lehmann, S (2000) Prion infection impairs the cellular response to oxidative stress. Proc Natl Acad Sci U S A; 97:13937–13942.

    Article  CAS  PubMed  Google Scholar 

  17. Rubenstein, R, Carp, RI, Callahan, SM (1984) In vitro replication of scrapie agent in a neuronal model: infection of PC12 cells. J Gen Virol; 65:2191–2198.

    Article  PubMed  Google Scholar 

  18. Rubenstein, R, Deng, H, Race, RE, Ju, W, Scalici, CL, Papini, MC, Kascsak, RJ, Carp, RI (1992) Demonstration of scrapie strain diversity in infected PC12 cells. J Gen Virol; 73:3027–3031.

    Article  CAS  PubMed  Google Scholar 

  19. Baron, GS, Magalhaes, AC, Prado, MA, Caughey, B (2006) Mouse-adapted scrapie infection of SN56 cells: greater efficiency with microsome-associated versus purified PrP-res. J Virol; 80:2106–2117.

    Article  CAS  PubMed  Google Scholar 

  20. Follet, J, Lemaire-Vieille, C, Blanquet-Grossard, F, Podevin-Dimster, V, Lehmann, S, Chauvin, JP, Decavel, JP, Varea, R, Grassi, J, Fontes, M, Cesbron, JY (2002) PrP expression and replication by Schwann cells: implications in prion spreading. J Virol; 76:2434–2439.

    Article  CAS  PubMed  Google Scholar 

  21. Archer, F, Bachelin, C, Andreoletti, O, Besnard, N, Perrot, G, Langevin, C, Le Dur, A, Vilette, D, Baron-Van Evercooren, A, Vilotte, JL, Laude, H (2004) Cultured peripheral neuroglial cells are highly permissive to sheep prion infection. J Virol; 78:482–490.

    Article  CAS  PubMed  Google Scholar 

  22. Taraboulos, A, Serban, D, Prusiner, SB (1990) Scrapie prion proteins accumulate in the cytoplasm of persistently infected cultured cells. J Cell Biol; 110:2117–2132.

    Article  CAS  PubMed  Google Scholar 

  23. Roikhel, VM, Fokina, GI, Lisak, VM, Kondakova, LI, Korolev, MB, Pogodina, VV (1987) Persistence of the scrapie agent in glial cells from rat Gasserian ganglion. Acta Virol; 31:36–42.

    CAS  PubMed  Google Scholar 

  24. Haig, DA, Clarke, MC (1971) Multiplication of the scrapie agent. Nature; 234:106–107.

    Article  CAS  PubMed  Google Scholar 

  25. Clarke, MC, Millson, GC (1976) Infection of a cell line of mouse L fibroblasts with scrapie agent. Nature; 261:144–145.

    Article  CAS  PubMed  Google Scholar 

  26. Cherednichenko Yu, N, Mikhailova, GR, Rajcani, J, Zhdanov, VM (1985) In vitro studies with the scrapie agent. Acta Virol; 29:285–293.

    PubMed  Google Scholar 

  27. Vorberg, I, Raines, A, Story, B, Priola, SA (2004) Susceptibility of common fibroblast cell lines to transmissible spongiform encephalopathy agents. J Infect Dis; 189:431–439.

    Article  CAS  PubMed  Google Scholar 

  28. Elleman, CJ (1984) Attempts to establish the scrapie agent in cell lines. Vet Res Commun; 8:309–316.

    Article  CAS  PubMed  Google Scholar 

  29. Vilette, D, Andreoletti, O, Archer, F, Madelaine, MF, Vilotte, JL, Lehmann, S, Laude, H (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci U S A; 98:4055–4059.

    Article  CAS  PubMed  Google Scholar 

  30. Sabuncu, E, Petit, S, Le Dur, A, Lan Lai, T, Vilotte, JL, Laude, H, Vilette, D (2003) PrP polymorphisms tightly control sheep prion replication in cultured cells. J Virol; 77:2696–2700.

    Article  CAS  PubMed  Google Scholar 

  31. Dlakic, WM, Grigg, E, Bessen, RA (2007) Prion infection of muscle cells in vitro. J Virol; 81:4615–4624.

    Article  CAS  PubMed  Google Scholar 

  32. Klebe, RJ, Ruddle, FH (1969) Neuroblastoma: cell culture analysis of a differentiating stem cell system. J Cell Biol; 43:69A.

    Google Scholar 

  33. Chesebro, B, Wehrly, K, Caughey, B, Nishio, J, Ernst, D, Race, R (1993) Foreign PrP expression and scrapie infection in tissue culture cell lines. Dev Biol Stand; 80:131–140.

    CAS  PubMed  Google Scholar 

  34. Mellon, PL, Windle, JJ, Goldsmith, PC, Padula, CA, Roberts, JL, Weiner, RI (1990) Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron; 5:1–10.

    Article  CAS  PubMed  Google Scholar 

  35. Bosque, PJ, Prusiner, SB (2000) Cultured cell sublines highly susceptible to prion infection. (2000) J Virol; 74:4377–4386.

    Article  CAS  PubMed  Google Scholar 

  36. Race, RE, Caughey, B, Graham, K, Ernst, D, Chesebro, B (1988) Analyses of frequency of infection, specific infectivity, and prion protein biosynthesis in scrapie-infected neuroblastoma cell clones. J Virol; 62:2845–2849.

    CAS  PubMed  Google Scholar 

  37. Borchelt, DR, Scott, M, Taraboulos, A, Stahl, N, Prusiner, SB (1990) Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J Cell Biol; 110:743–752.

    Article  CAS  PubMed  Google Scholar 

  38. Caughey, B, Raymond, GJ (1991) The scrapie-associated form of PrP is made from a cell surface precursor that is both protease- and phospholipase-sensitive. J Biol Chem; 266:18217–18223.

    CAS  PubMed  Google Scholar 

  39. Gorodinsky, A, Harris, DA (1995) Glycolipid-anchored proteins in neuroblastoma cells form detergent-resistant complexes without caveolin. J Cell Biol; 129:619–627.

    Article  CAS  PubMed  Google Scholar 

  40. Taraboulos, A, Scott, M, Semenov, A, Avrahami, D, Laszlo, L, Prusiner, SB, Avraham, D (1995) Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol; 129:121–132.

    Article  CAS  PubMed  Google Scholar 

  41. Caughey, B, Race, RE (1992) Potent inhibition of scrapie-associated PrP accumulation by congo red. J Neurochem; 59:768–771.

    Article  CAS  PubMed  Google Scholar 

  42. Winklhofer, KF, Tatzelt, J (2000) Cationic lipopolyamines induce degradation of PrPSc in scrapie-infected mouse neuroblastoma cells. Biol Chem; 381:463–469.

    Article  CAS  PubMed  Google Scholar 

  43. Supattapone, S, Nishina, K, Rees, JR (2002) Pharmacological approaches to prion research. Biochem Pharmacol; 63:1383–1388.

    Article  CAS  PubMed  Google Scholar 

  44. Prusiner, SB (1998) Prions. Proc Natl Acad Sci U S A; 95:13363–13383.

    Article  CAS  PubMed  Google Scholar 

  45. Bolton, DC, McKinley, MP, Prusiner, SB (1984) Molecular characteristics of the major scrapie prion protein. Biochemistry; 23:5898–5906.

    Article  CAS  PubMed  Google Scholar 

  46. Korth, C, Streit, P, Oesch, B (1999) Monoclonal antibodies specific for the native, disease-associated isoform of the prion protein. Methods Enzymol; 309:106–122.

    Article  CAS  PubMed  Google Scholar 

  47. Paramithiotis, E, Pinard, M, Lawton, T, LaBoissiere, S, Leathers, VL, Zou, WQ, Estey, LA, Lamontagne, J, Lehto, MT, Kondejewski, LH, Francoeur, GP, Papadopoulos, M, Haghighat, A, Spatz, SJ, Head, M, Will, R, Ironside, J, O'Rourke, K, Tonelli, Q, Ledebur, HC, Chakrabartty, A, Cashman, NR (2003) A prion protein epitope selective for the pathologically misfolded conformation. Nat Med; 9:893–899.

    Article  CAS  PubMed  Google Scholar 

  48. Manuelidis, L, Sklaviadis, T, Manuelidis, EE (1987) Evidence suggesting that PrP is not the infectious agent in Creutzfeldt-Jakob disease. EMBO J; 6:341–347.

    CAS  PubMed  Google Scholar 

  49. Hsiao, KK, Groth, D, Scott, M, Yang, SL, Serban, H, Rapp, D, Foster, D, Torchia, M, Dearmond, SJ, Prusiner, SB (1994) Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein. Proc Natl Acad Sci U S A; 91:9126–9130.

    Article  CAS  PubMed  Google Scholar 

  50. Lasmezas, CI, Deslys, JP, Robain, O, Jaegly, A, Beringue, V, Peyrin, JM, Fournier, JG, Hauw, JJ, Rossier, J, Dormont, D (1997) Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science; 275:402–405.

    Article  CAS  PubMed  Google Scholar 

  51. Hill, AF, Antoniou, M, Collinge, J (1999) Protease-resistant prion protein produced in vitro lacks detectable infectivity. J Gen Virol; 80:11–14.

    CAS  PubMed  Google Scholar 

  52. Shaked, GM, Fridlander, G, Meiner, Z, Taraboulos, A, Gabizon, R (1999) Protease-resistant and detergent-insoluble prion protein is not necessarily associated with prion infectivity. J Biol Chem; 274:17981–17986.

    Article  CAS  PubMed  Google Scholar 

  53. Klöhn, PC, Stoltze, L, Flechsig, E, Enari, M, Weissmann, C (2003) A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc Natl Acad Sci U S A; 100:11666–11671.

    Article  PubMed  CAS  Google Scholar 

  54. Winklhofer, KF, Hartl, FU, Tatzelt, J (2001) A sensitive filter retention assay for the detection of PrP(Sc) and the screening of anti-prion compounds. FEBS Lett; 503:41–45.

    Article  CAS  PubMed  Google Scholar 

  55. Serban, D, Taraboulos, A, DeArmond, SJ, Prusiner, SB (1990) Rapid detection of Creutzfeldt-Jakob disease and scrapie prion proteins. Neurology; 40:110–117.

    CAS  PubMed  Google Scholar 

  56. Caughey, B, Raymond, GJ, Ernst, D, Race, RE (1991) N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol; 65:6597–6603.

    CAS  PubMed  Google Scholar 

  57. Kurschner, C, Morgan, JI (1995) The cellular prion protein (PrP) selectively binds to Bcl-2 in the yeast two-hybrid system. Brain Res Mol Brain Res; 30:165–168.

    Article  CAS  PubMed  Google Scholar 

  58. Edenhofer, F, Rieger, R, Famulok, M, Wendler, W, Weiss, S, Winnacker, EL (1996) Prion protein PrPC interacts with molecular chaperones of the Hsp60 family. J Virol; 70:4724–4728.

    CAS  PubMed  Google Scholar 

  59. Rieger, R, Edenhofer, F, Lasmezas, CI, Weiss, S (1997) The human 37-kDa laminin receptor precursor interacts with the prion protein in eukaryotic cells. Nat Med; 3:1383–1388.

    Article  CAS  PubMed  Google Scholar 

  60. Spielhaupter, C, Schatzl, HM (2001) PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem; 276:44604–44612.

    Article  CAS  PubMed  Google Scholar 

  61. Gauczynski, S, Peyrin, JM, Haik, S, Leucht, C, Hundt, C, Rieger, R, Krasemann, S, Deslys, JP, Dormont, D, Lasmezas, CI, Weiss, S (2001) The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J; 20:5863–5875.

    Article  CAS  PubMed  Google Scholar 

  62. Leucht, C, Simoneau, S, Rey, C, Vana, K, Rieger, R, Lasmezas, CI, Weiss, S (2003) The 37 kDa/67 kDa laminin receptor is required for PrP(Sc) propagation in scrapie-infected neuronal cells. EMBO Rep; 4:290–295.

    Article  CAS  PubMed  Google Scholar 

  63. Chen, S, Mange, A, Dong, L, Lehmann, S, Schachner, M (2003) Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol Cell Neurosci; 22:227–233.

    Article  CAS  PubMed  Google Scholar 

  64. Zanata, SM, Lopes, MH, Mercadante, AF, Hajj, GN, Chiarini, LB, Nomizo, R, Freitas, AR, Cabral, AL, Lee, KS, Juliano, MA, de Oliveira, E, Jachieri, SG, Burlingame, A, Huang, L, Linden, R, Brentani, RR, Martins, VR (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J; 21:3307–3316.

    Article  CAS  PubMed  Google Scholar 

  65. Keshet, GI, Bar-Peled, O, Yaffe, D, Nudel, U, Gabizon, R (2000) The cellular prion protein colocalizes with the dystroglycan complex in the brain. J Neurochem; 75:1889–1897.

    Article  CAS  PubMed  Google Scholar 

  66. Schmitt-Ulms, G, Legname, G, Baldwin, MA, Ball, HL, Bradon, N, Bosque, PJ, Crossin, KL, Edelman, GM, DeArmond, SJ, Cohen, FE, Prusiner, SB (2001) Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol; 314:1209–1225.

    Article  CAS  PubMed  Google Scholar 

  67. Diaz-Nido, J, Wandosell, F, Avila, J (2002) Glycosaminoglycans and beta-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides; 23:1323–1332.

    Article  CAS  PubMed  Google Scholar 

  68. Gabizon, R, Meiner, Z, Halimi, M, Ben-Sasson, SA (1993) Heparin-like molecules bind differentially to prion-proteins and change their intracellular metabolic fate. J Cell Physiol; 157:319–325.

    Article  CAS  PubMed  Google Scholar 

  69. Caughey, B, Brown, K, Raymond, GJ, Katzenstein, GE, Thresher, W (1994) Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and congo red. J Virol; 68:2135–2141.

    CAS  PubMed  Google Scholar 

  70. Schonberger, O, Horonchik, L, Gabizon, R, Papy-Garcia, D, Barritault, D, Taraboulos, A (2003) Novel heparan mimetics potently inhibit the scrapie prion protein and its endocytosis. Biochem Biophys Res Commun; 312:473–479.

    Article  CAS  PubMed  Google Scholar 

  71. Caughey, B, Raymond, GJ (1993) Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol; 67:643–650.

    CAS  PubMed  Google Scholar 

  72. Ehlers, B, Diringer, H (1984) Dextran sulphate 500 delays and prevents mouse scrapie by impairment of agent replication in spleen. J Gen Virol; 65:1325–1330.

    Article  CAS  PubMed  Google Scholar 

  73. Snow, AD, Kisilevsky, R, Willmer, J, Prusiner, SB, DeArmond, SJ (1989) Sulfated glycosaminoglycans in amyloid plaques of prion diseases. Acta Neuropathol (Berl); 77:337–342.

    Article  CAS  Google Scholar 

  74. McBride, PA, Wilson, MI, Eikelenboom, P, Tunstall, A, Bruce, ME (1998) Heparan sulfate proteoglycan is associated with amyloid plaques and neuroanatomically targeted PrP pathology throughout the incubation period of scrapie-infected mice. Exp Neurol; 149:447–454.

    Article  CAS  PubMed  Google Scholar 

  75. Shyng, SL, Lehmann, S, Moulder, KL, Harris, DA (1995) Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells. J Biol Chem; 270:30221–30229.

    Article  CAS  PubMed  Google Scholar 

  76. Ben-Zaken, O, Tzaban, S, Tal, Y, Horonchik, L, Esko, JD, Vlodavsky, I, Taraboulos, A (2003) Cellular heparan sulfate participates in the metabolism of prions. J Biol Chem; 278:40041–40049.

    Article  CAS  PubMed  Google Scholar 

  77. Bueler, H, Fischer, M, Lang, Y, Bluethmann, H, Lipp, HP, DeArmond, SJ, Prusiner, SB, Aguet, M, Weissmann, C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature; 356:577–582.

    Article  CAS  PubMed  Google Scholar 

  78. Manson, JC, Clarke, AR, Hooper, ML, Aitchison, L, McConnell, I, Hope, J (1994) 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol; 8:121–127.

    Article  CAS  PubMed  Google Scholar 

  79. Sakaguchi, S, Katamine, S, Nishida, N, Moriuchi, R, Shigematsu, K, Sugimoto, T, Nakatani, A, Kataoka, Y, Houtani, T, Shirabe, S, Okada, H, Hasegawa, S, Miyamoto, T, Noda, T (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature; 380:528–531.

    Article  CAS  PubMed  Google Scholar 

  80. Moore, R Gene targeting studies at the mouse prion protein locus. (1997) PhD thesis, University of Edinburgh, Edinburgh, Scotland.

    Google Scholar 

  81. Weissmann, C, Aguzzi, A (1999) Perspectives: neurobiology. PrP's double causes trouble. Science; 286:914–915.

    Article  CAS  PubMed  Google Scholar 

  82. Moore, RC, Lee, I Y, Silverman, GL, Harrison, PM, Strome, R, Heinrich, C, Karunaratne, A, Pasternak, SH, Chishti, MA, Liang, Y, Mastrangelo, P, Wang, K, Smit, AF, Katamine, S, Carlson, GA, Cohen, FE, Prusiner, SB, Melton, DW, Tremblay, P, Hood, LE, Westaway, D (1999) Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J Mol Biol; 292:797–817.

    Article  CAS  PubMed  Google Scholar 

  83. Tremblay, P, Meiner, Z, Galou, M, Heinrich, C, Petromilli, C, Lisse, T, Cayetano, J, Torchia, M, Mobley, W, Bujard, H, DeArmond, SJ, Prusiner, SB (1998) Doxycycline control of prion protein transgene expression modulates prion disease in mice. Proc Natl Acad Sci U S A; 95:12580–12585.

    Article  CAS  PubMed  Google Scholar 

  84. Viles, JH, Cohen, FE, Prusiner, SB, Goodin, DB, Wright, PE, Dyson, HJ (1999) Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci U S A; 96:2042–2047.

    Article  CAS  PubMed  Google Scholar 

  85. Burns, CS, Aronoff-Spencer, E, Legname, G, Prusiner, SB, Antholine, WE, Gerfen, GJ, Peisach, J, Millhauser, GL (2003) Copper coordination in the full-length, recombinant prion protein. Biochemistry; 42:6794–6803.

    Article  CAS  PubMed  Google Scholar 

  86. Brown, DR, Qin, K, Herms, JW, Madlung, A, Manson, J, Strome, R, Fraser, PE, Kruck, T, von Bohlen, A, Schulz-Schaeffer, W, Giese, A, Westaway, D, Kretzschmar, H (1997) The cellular prion protein binds copper in vivo. Nature; 390:684–687.

    Article  CAS  PubMed  Google Scholar 

  87. Brown, DR, Schulz-Schaeffer, WJ, Schmidt, B, Kretzschmar, HA (1997) Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp Neurol; 146:104–112.

    Article  CAS  PubMed  Google Scholar 

  88. Pauly, PC, Harris, DA (1998) Copper stimulates endocytosis of the prion protein. J Biol Chem; 273:33107–33110.

    Article  CAS  PubMed  Google Scholar 

  89. Klamt, F, Dal-Pizzol, F, Conte da Frota, MJ, Walz, R, Andrades, ME, da Silva, EG, Brentani, RR, Izquierdo, I, Fonseca Moreira, JC (2001) Imbalance of antioxidant defense in mice lacking cellular prion protein. Free Radic Biol Med; 30:1137–1144.

    Article  CAS  PubMed  Google Scholar 

  90. Graner, E, Mercadante, AF, Zanata, SM, Forlenza, OV, Cabral, AL, Veiga, SS, Juliano, MA, Roesler, R, Walz, R, Minetti, A, Izquierdo, I, Martins, VR, Brentani, RR (2000) Cellular prion protein binds laminin and mediates neuritogenesis. Brain Res Mol Brain Res; 76:85–92.

    Article  CAS  PubMed  Google Scholar 

  91. Graner, E, Mercadante, AF, Zanata, SM, Martins, VR, Jay, DG, Brentani, RR (2000) Laminin-induced PC-12 cell differentiation is inhibited following laser inactivation of cellular prion protein. FEBS Lett; 482:257–260.

    Article  CAS  PubMed  Google Scholar 

  92. Monnet, C, Marthiens, V, Enslen, H, Frobert, Y, Sobel, A, Mege, RM (2003) Heterogeneity and regulation of cellular prion protein glycoforms in neuronal cell lines. Eur J Neurosci; 18:542–548.

    Article  PubMed  Google Scholar 

  93. Kuwahara, C, Takeuchi, AM, Nishimura, T, Haraguchi, K, Kubosaki, A, Matsumoto, Y, Saeki, K, Yokoyama, T, Itohara, S, Onodera, T (1999) Prions prevent neuronal cell-line death. Nature; 400:225–226.

    Article  CAS  PubMed  Google Scholar 

  94. Bounhar, Y, Zhang, Y, Goodyer, CG, LeBlanc, A (2001) Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem; 276:39145–39149.

    Article  CAS  PubMed  Google Scholar 

  95. Chiarini, LB, Freitas, AR, Zanata, SM, Brentani, RR, Martins, VR, Linden, R (2002) Cellular prion protein transduces neuroprotective signals. EMBO J; 21:3317–3326.

    Article  CAS  PubMed  Google Scholar 

  96. Diarra-Mehrpour, M, Arrabal, S, Jalil, A, Pinson, X, Gaudin, C, Pietu, G, Pitaval, A, Ripoche, H, Eloit, M, Dormont, D, Chouaib, S (2004) Prion protein prevents human breast carcinoma cell line from tumor necrosis factor alpha-induced cell death. Cancer Res; 64:719–727.

    Article  CAS  PubMed  Google Scholar 

  97. Kim, BH, Lee, HG, Choi, JK, Kim, JI, Choi, EK, Carp, RI, Kim, YS (2004) The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. Brain Res Mol Brain Res; 124:40–50.

    Article  CAS  PubMed  Google Scholar 

  98. Paitel, E, Sunyach, C, Alves da Costa, C, Bourdon, JC, Vincent, B, Checler, F (2004) Primary cultured neurons devoid of cellular prion display lower responsiveness to staurosporine through the control of p53 at both transcriptional and post-transcriptional levels. J Biol Chem; 279:612–618.

    Article  CAS  PubMed  Google Scholar 

  99. Mouillet-Richard, S, Ermonval, M, Chebassier, C, Laplanche, JL, Lehmann, S, Launay, JM, Kellermann, O (2000) Signal transduction through prion protein. Science; 289:1925–1928.

    Article  CAS  PubMed  Google Scholar 

  100. Toni, M, Spisni, E, Griffoni, C, Santi, S, Riccio, M, Lenaz, P, Tomasi, V (2006) Cellular prion protein and caveolin-1 interaction in a neuronal cell line precedes fyn/erk ½ signal transduction. J Biomed Biotechnol; 69469.

    Google Scholar 

  101. Solforosi, L, Criado, JR, McGavern, DB, Wirz, S, Sanchez-Alavez, M, Sugama, S, DeGiorgio, LA, Volpe, BT, Wiseman, E, Abalos, G, Masliah, E, Gilden, D, Oldstone, MB, Conti, B, Williamson, RA (2004) Cross-linking cellular prion protein triggers neuronal apop-tosis in vivo. Science; 303:1514–1516.

    Article  CAS  PubMed  Google Scholar 

  102. Schneider, B, Mutel, V, Pietri, M, Ermonval, M, Mouillet-Richard, S, Kellermann, O (2003) NADPH oxidase and extracellular regulated kinases 1/2 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc Natl Acad Sci U S A; 100:13326–13331.

    Article  CAS  PubMed  Google Scholar 

  103. Morel, E, Fouquet, S, Chateau, D, Yvernault, L, Frobert, Y, Pincon-Raymond, M, Chambaz, J, Pillot, T, Rousset, M (2004) The cellular prion protein PrPc is expressed in human enterocytes in cell-cell junctional domains. J Biol Chem; 279:1499–1505.

    Article  CAS  PubMed  Google Scholar 

  104. Mattei, V, Garofalo, T, Misasi, R, Circella, A, Manganelli, V, Lucania, G, Pavan, A, Sorice, M (2004) Prion protein is a component of the multimolecular signaling complex involved in T cell activation. FEBS Lett; 560:14–18.

    Article  CAS  PubMed  Google Scholar 

  105. Ertmer, A, Gilch, S, Yun, SW, Flechsig, E, Klebl, B, Stein-Gerlach, M, Klein, MA, Schatzl, HM (2004) The tyrosine kinase inhibitor STI571 induces cellular clearance of PrPSc in prion-infected cells. J Biol Chem; 279:41918–41927.

    Article  CAS  PubMed  Google Scholar 

  106. Beggs, HE, Soriano, P, Maness, PF (1994) NCAM-dependent neurite outgrowth is inhibited in neurons from Fyn-minus mice. J Cell Biol; 127:825–833.

    Article  CAS  PubMed  Google Scholar 

  107. Kasahara, K, Sanai, Y (1999) Possible roles of glycosphingolipids in lipid rafts. Biophys Chem; 82:121–127.

    Article  CAS  PubMed  Google Scholar 

  108. Wu, CB, Butz, S, Ying, YS, Anderson, RGW (1997) Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. J Biol Chem; 272:3554–3559.

    Article  CAS  PubMed  Google Scholar 

  109. DeArmond, SJ, Kristensson, K, Bowler, RP (1992) PrPSc causes nerve cell death and stimulates astrocyte proliferation: a paradox. Prog Brain Res; 94:437–446.

    Article  CAS  PubMed  Google Scholar 

  110. Wong, K, Qiu, Y, Hyun, W, Nixon, R, VanCleff, J, Sanchez-Salazar, J, Prusiner, SB, DeArmond, SJ (1996) Decreased receptor-mediated calcium response in prion-infected cells correlates with decreased membrane fluidity and IP3 release. Neurology; 47:741–750.

    CAS  PubMed  Google Scholar 

  111. Östlund, P, Lindegren, H, Pettersson, C, Bedecs, K Altered insulin receptor processing and function in scrapie-infected neuroblastoma cell lines. Brain Res Mol Brain Res 2001;97:161–170.

    Article  PubMed  Google Scholar 

  112. Nielsen, D, Gyllberg, H, Östlund, P, Bergman, T, Bedecs, K (2004) Increased levels of insulin and insulin-like growth factor-1 hybrid receptors and decreased glycosylation of the insulin receptor alpha- and beta-subunits in scrapie-infected neuroblastoma N2a cells. Biochem J; 380:571–579.

    Article  CAS  PubMed  Google Scholar 

  113. Diez, M, Koistinaho, J, Dearmond, SJ, Groth, D, Prusiner, SB, Hokfelt, T (1997) Marked decrease of neuropeptide Y Y2 receptor binding sites in the hippocampus in murine prion disease. Proc Natl Acad Sci U S A; 94:13267–13272.

    Article  CAS  PubMed  Google Scholar 

  114. Tatzelt, J, Zuo, J, Voellmy, R, Scott, M, Hartl, U, Prusiner, SB, Welch, WJ (1995) Scrapie prions selectively modify the stress response in neuroblastoma cells. Proc Natl Acad Sci U S A; 92:2944–2948.

    Article  CAS  PubMed  Google Scholar 

  115. Ovadia, H, Rosenmann, H, Shezen, E, Halimi, M, Ofran, I, Gabizon, R (1996) Effect of scrapie infection on the activity of neuronal nitric-oxide synthase in brain and neuroblastoma cells. J Biol Chem; 271:16856–16861.

    Article  CAS  PubMed  Google Scholar 

  116. Gyllberg, H, Lofgren, K, Lindegren, H, Bedecs, K (2006) Increased Src kinase level results in increased protein tyrosine phosphorylation in scrapie-infected neuronal cell lines. FEBS Lett; 580:2603–2608.

    Article  CAS  PubMed  Google Scholar 

  117. Nixon, RR (2005) Prion-associated increases in Src-family kinases. J Biol Chem; 280:2455–2462.

    Article  CAS  PubMed  Google Scholar 

  118. Giese, A, Brown, DR, Groschup, MH, Feldmann, C, Haist, I, Kretzschmar, HA (1998) Role of microglia in neuronal cell death in prion disease. Brain Pathol; 8:449–457.

    Article  CAS  PubMed  Google Scholar 

  119. Muller, WE, Ushijima, H, Schroder, HC, Forrest, JM, Schatton, WF, Rytik, PG, Heffner-Lauc, M (1993) Cytoprotective effect of NMDA receptor antagonists on prion protein (PrionSc)-induced toxicity in rat cortical cell cultures. Eur J Pharmacol; 246:261–267.

    Article  CAS  PubMed  Google Scholar 

  120. Cronier, S, Laude, H, Peyrin, JM (2004) Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death. Proc Natl Acad Sci U S A; 101:12271–12276.

    Article  CAS  PubMed  Google Scholar 

  121. Ju, WK, Park, KJ, Choi, EK, Kim, J, Carp, RI, Wisniewski, HM, Kim, YS (1998) Expression of inducible nitric oxide synthase in the brains of scrapie-infected mice. J Neurovirol; 4:445–450.

    Article  CAS  PubMed  Google Scholar 

  122. Williams, A, Van Dam, AM, Ritchie, D, Eikelenboom, P, Fraser, H (1997) Immunocytochemical appearance of cytokines, prostaglandin E2 and lipocortin-1 in the CNS during the incubation period of murine scrapie correlates with progressive PrP accumulations. Brain Res; 754:171–180.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Bedecs, K. (2008). Cell Culture Models to Unravel Prion Protein Function and Aberrancies in Prion Diseases. In: Hill, A.F. (eds) Prion Protein Protocols. Methods in Molecular Biology™, vol 459. Humana Press. https://doi.org/10.1007/978-1-59745-234-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-234-2_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-897-3

  • Online ISBN: 978-1-59745-234-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics