Skip to main content

Targeting Integration of the Saccharomyces Ty5 Retrotransposon

  • Protocol
Chromosomal Mutagenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 435))

Abstract

Many retrotransposons and retroviruses display integration site specificity. Increasingly, this specificity is found to result from recognition by the retroelement of specific chromatin states or DNA-bound protein complexes. A well-studied example of such a targeted retroelement is the Saccharomyces Ty5 retrotransposon, which integrates into heterochromatin at the telomeres and silent mating loci. Targeting is mediated by an interaction between Ty5 integrase (IN) and the heterochromatin protein silent information regulator 4 (Sir4). A small motif of IN, called the targeting domain, is responsible for this interaction. Ty5 integration can be directed to DNA sites outside of heterochromatin by tethering Sir4 to ectopic locations using fusion proteins between Sir4 and a DNA-binding domain. Alternatively, the targeting domain of Ty5 can be swapped with peptides that recognize other protein partners, thereby generating Ty5 elements with new target specificities. The mechanism of Ty5 target site choice suggests that integration specificity of other retrotransposons and retroviruses can be altered by engineering integrases to recognize DNA-bound protein partners. Retroelements can also be used to probe chromatin dynamics and the distribution of protein complexes on chromosomes. Here, we describe the basic assay by which Ty5 integration is monitored to sites of tethered Sir4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kazazian, H. H., Jr. (2004) Mobile elements: drivers of genome evolution. Science 303, 1626–1632.

    Article  CAS  PubMed  Google Scholar 

  2. Hua-Van, A., Le Rouzic, A., Maisonhaute, C., and Capy, P. (2005) Abundance, distribution and dynamics of retrotransposable elements and transposons: similarities and differences. Cytogenet. Genome Res. 110, 426–440.

    Article  CAS  PubMed  Google Scholar 

  3. Bushman, F. D. (2003) Targeting survival: integration site selection by retroviruses and LTR-retrotransposons. Cell 115, 135–138.

    Article  CAS  PubMed  Google Scholar 

  4. Chalker, D. L. and Sandmeyer, S. B. (1992) Ty3 integrates within the region of RNA polymerase III transcription initiation. Genes Dev. 6, 117–128.

    Article  CAS  PubMed  Google Scholar 

  5. Devine, S. E. and Boeke, J. D. (1996) Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev. 10, 620–633.

    Article  CAS  PubMed  Google Scholar 

  6. Yieh, L., Kassavetis, G., Geiduschek, E. P., and Sandmeyer, S. B. (2000) The Brf and TATA-binding protein subunits of the RNA polymerase III transcription factor IIIB mediate position-specific integration of the gypsy-like element, Ty3. J. Biol. Chem. 275, 29,800–29,807.

    Article  CAS  PubMed  Google Scholar 

  7. Bachman, N., Gelbart, M. E., Tsukiyama, T., and Boeke, J. D. (2005) TFIIIB subunit Bdp1p is required for periodic integration of the Ty1 retrotransposon and targeting of Isw2p to S. cerevisiae tDNAs. Genes Dev. 19, 955–964.

    Article  CAS  PubMed  Google Scholar 

  8. Schroder, A., Shinn, P., Chen, H., Berry, C., Ecker, J., and Bushman, F. (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521.

    Article  CAS  PubMed  Google Scholar 

  9. Wu, X., Li, Y., Crise, B., and Burgess, S. M. (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300, 1749–1751.

    Article  CAS  PubMed  Google Scholar 

  10. Ciuffi, A., Llano, M., Poeschla, E., et al. (2005) A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 11, 1287–1289.

    Article  CAS  PubMed  Google Scholar 

  11. Cherepanov, P., Sun, Z. Y., Rahman, S., Maertens, G., Wagner, G., and Engelman, A. (2005) Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nat. Struct. Mol. Biol. 12, 526–532.

    Article  CAS  PubMed  Google Scholar 

  12. Zou, S. and Voytas, D. F. (1997) Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5. Proc. Natl. Acad. Sci. USA 94, 7412–7416.

    Article  CAS  PubMed  Google Scholar 

  13. Zou, S., Kim, J. M., and Voytas, D. F. (1996) The Saccharomyces retrotransposon Ty5 influences the organization of chromosome ends. Nucleic Acids Res. 24, 4825–4831.

    Article  CAS  PubMed  Google Scholar 

  14. Zou, S., Ke, N., Kim, J. M., and Voytas, D. F. (1996) The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev. 10, 634–645.

    Article  CAS  PubMed  Google Scholar 

  15. Xie, W., Gai, X., Zhu, Y., Zappulla, D. C., Sternglanz, R., and Voytas, D. F. (2001) Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p. Mol. Cell Biol. 21, 6606–6614.

    Article  CAS  PubMed  Google Scholar 

  16. Gai, X. and Voytas, D. F. (1998) A single amino acid change in the yeast retrotransposon Ty5 abolishes targeting to silent chromatin. Mol. Cell 1, 1051–1055.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, Y., Dai, J., Fuerst, P. G., and Voytas, D. F. (2003) Controlling integration specificity of a yeast retrotransposon. Proc. Natl. Acad. Sci. USA 100, 5891–5895.

    Article  CAS  PubMed  Google Scholar 

  18. Bowen, N. J., Jordan, I. K., Epstein, J. A., Wood, V., and Levin, H. L. (2003) Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. Genome Res. 13, 1984–1997.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu, Y., Zou, S., Wright, D. A., and Voytas, D. F. (1999) Tagging chromatin with retrotransposons: target specificity of the Saccharomyces Ty5 retrotransposon changes with the chromosomal localization of Sir3p and Sir4p. Genes Dev. 13, 2738–2749.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, H., Mitra, R., and Johnston, M. (2006) Development of ‘calling cards’ for DNA binding proteins. Abstract, Yeast Genetics Meeting, 505A.

    Google Scholar 

  21. Horak, C. E. and Snyder, M. (2002) ChIP-chip: a genomic approach for identifying transcription factor binding sites. Methods Enzymol. 350, 469–483.

    Article  CAS  PubMed  Google Scholar 

  22. Sikorski, R. S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.

    CAS  PubMed  Google Scholar 

  23. Gao, X., Rowley, D. J., Gai, X., and Voytas, D. F. (2002) Ty5 gag mutations increase retrotransposition and suggest a role for hydrogen bonding in the function of the nucleocapsid zinc finger. J. Virol. 76, 3240–3247.

    Article  CAS  PubMed  Google Scholar 

  24. Curcio, M. J. and Garfinkel, D. J. (1991) Single-step selection for Ty1 element retrotransposition. Proc. Natl. Acad. Sci. USA 88, 936–940.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Brady, T.L., Schmidt, C.L., Voytas, D.F. (2008). Targeting Integration of the Saccharomyces Ty5 Retrotransposon. In: Davis, G.D., Kayser, K.J. (eds) Chromosomal Mutagenesis. Methods in Molecular Biology, vol 435. Humana Press. https://doi.org/10.1007/978-1-59745-232-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-232-8_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-899-7

  • Online ISBN: 978-1-59745-232-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics