Skip to main content

Identification of Bone Marrow Derived Nonhematopoietic Cells by Double Labeling with Immunohistochemistry and In Situ Hybridization

  • Protocol
  • 880 Accesses

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 134))

Abstract

Stem cell migration/trafficking is a field of interest that is shared by pathologists, histologists, clinical transplantation teams, cardiologists, neurologists, and many other members of different disciplines. Until the findings of a successful combination of in situ methods, the origin of chimeric parenchymal cells was a dilemma. These double-labeling techniques have brought insight to our new concept of stem cell biology. It has been extremely helpful in the detection of the origin of terminally differentiated, including hematopoietic and nonhematopoietic, cells appearing following allogeneic stem cell transplantation. It has also become a standard approach for evaluation of repopulation following tissue injury in solid organ transplant patients or experimental models.

Although very useful, this technique has its advantages and pitfalls. It requires expertise in application and interpretation. Suitable selection of specific markers against parenchymal cells and preferably a cocktail of antibodies targeting infiltration inflammatory cells are mandatory. One pitfall of this method is its restriction to sex-mismatched pairs. The spectrum of labels for X and Y chromosmes are suitable for combination. To prevent misinterpretation, the precautions needed are defined in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001) Bone marrow stem cells regenerate infarcted myocardium. Nature 410, 701–705.

    Article  CAS  PubMed  Google Scholar 

  2. Terada, N., Hamazaki, T., Oka, M., et al. (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545.

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J. M., et al. (2003) Fusion of bone-marrow derived cells with purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968–973.

    Article  CAS  PubMed  Google Scholar 

  4. Nygren, J. M., Jovinge, S., Breitbach, M., et al. (2004) Bone marrow derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10, 494–501.

    Article  CAS  PubMed  Google Scholar 

  5. Idilman, R., Erden, E., Kuzu, I., et al. (2004) Recipient derived hepatocytes in sex mismatched liver allografts after liver transplantation: early versus late transplant biopsies. Transplantation 78, 1647–1652.

    Article  PubMed  Google Scholar 

  6. Mete, T., Ensari, A., Sengul, S., Keven K., and Erbay B. (2005) The presence of recipient-derived renal ceils in damaged allograft kidneys. Nephrology Dialysis Transplant. 20(Suppl 5), 361.

    Google Scholar 

  7. Cogle, C. R., Yachnis, A. T., Laywell, E. D., et al. (2004) Bone marrow transdifferentiation in brain after transplantation. Lancet 363, 1432–1437.

    Article  CAS  PubMed  Google Scholar 

  8. Idilman, R., Kuzu, L., Erden, E., et al. (2006) Evaluation of the effect of transplantation related factors and tissue injury on donor-derived hepatocyte and gastrointestinal epithelial cell repopulation following hematopoietic cell transplantation. Bone Marrow Transplant. 37, 199–206.

    Article  CAS  PubMed  Google Scholar 

  9. Matsumoto, T., Okamoto, R., Yajima, T., et al. (2005) Increase of bone marrow-derived secretory lineage epithelial cells during regeneration in the human intestine. Gastroenterology 128, 1852–1867.

    Article  Google Scholar 

  10. Kucia, M., Reca, R., Jala, V. R., Dawn, B., Ratajczak, J., Ratajczak, M. Z. (2005) Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 19, 1118–1127.

    Article  CAS  PubMed  Google Scholar 

  11. Urbanek, K., Torella, D., Sheikh, F., et al. (2005) Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc. Natl. Acad. Sci. USA. 102, 8692–8697.

    Article  CAS  PubMed  Google Scholar 

  12. Küstermann, E., Roell, W., Breitbach, M., et al. (2005) Stem cell implantation in ischemic mouse heart: a high-resolution magnetic resonance imaging investigation. NMR Biomed. 18, 362–370.

    Article  PubMed  Google Scholar 

  13. Blau, H. M., Brazelton, T. R., and Weimann, J. M. (2001) The evolving concept of a stem cell: entity or function. Cell 105, 829–841.

    Article  CAS  PubMed  Google Scholar 

  14. Brittan, M. L., Braun, K. M., Reynolds, L. E., et al. (2005) Bone marrow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion. J. Pathol. 205, 1–13.

    Article  PubMed  Google Scholar 

  15. Poulsom, R., Alison, M. R., Forbes, S. J., and Wright, N. A. (2002) Adult stem cell plasticity. J. Pathol. 197, 441–456.

    Article  PubMed  Google Scholar 

  16. Direkze, N. C., Hodivala-Dilke, K., Jeffery, R., et al. (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res. 64, 8492–8495.

    Article  CAS  PubMed  Google Scholar 

  17. Poulsom, R., Alison, M. R., Cook, T., et al. (2003) Bone marrow stem cells contribute to healing of the kidney. Am. Soc. Nephrol. 14(Suppl 1), S48–54.

    Article  Google Scholar 

  18. Direkze, N. C., Forbes, S. J., Brittan, M., et al (2003) Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow-transplanted mice. Stem Cells 21, 514–520.

    Article  PubMed  Google Scholar 

  19. Johnson, K. L., Zhen, D. K., and Bianchi, D. W. (2000) The use of fluorescence in-situ hybridization (FISH) on paraffin-embedded tissue sections for study of microchimerism. BioTechniqu.es 29, 1220–1224.

    CAS  Google Scholar 

  20. Yong-Jie, L., Birdsall, S., Summersgill, B., et al. (1999) Dual Colour Fluorescence in situ Hybridization to parafin-embedded samples to deduce the presence of the der(X) t(X;18)(p 11.2;q11.2) and involvement of either the SSX1 or SSX2 gene: A Diagnostic and prognostic aid for synovial sarcoma. J. Pathol. 187, 490–496.

    Article  Google Scholar 

  21. Haralambieva, E., Kleiverda, K., Mason, D. Y., Schuuring, E., and Kluin, P. M. (2002) Detection of three common translocation breakpoints in non-Hodgkin’s lymphomas by fluorescence in situ hybridization on routine paraffin-embedded tissue sections. J. Pathol 198, 163–170.

    Article  CAS  PubMed  Google Scholar 

  22. Haralambieva, E., Alison, H. B., Bastard, C., et al. (2003) Detection by the fluorescence in situ hybridization technique of MYC translocations in parafin-embedded iymphoma biopsy samples. Br. J. Haem. 121, 49–56.

    Article  CAS  Google Scholar 

  23. Speel, E. J. M. (1999). Detection and amplification systems for sensitive, multiple-target DNA and RNA in situ hybridization: looking inside cells with a spectrum of colors. Histochem. Cell Biol. 112, 89–113.

    Article  CAS  PubMed  Google Scholar 

  24. Matsuta, M. and Matsuta, M. (2000) In situ hybridization for DNA: fluorescent probe, in Molecular Histochemical Techniques (Koji., T., ed.). Springer, Germany, pp. 66–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Kuzu, I., Beksac, M. (2007). Identification of Bone Marrow Derived Nonhematopoietic Cells by Double Labeling with Immunohistochemistry and In Situ Hybridization. In: Beksac, M. (eds) Bone Marrow and Stem Cell Transplantation. Methods in Molecular Medicine, vol 134. Humana Press. https://doi.org/10.1007/978-1-59745-223-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-223-6_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-595-8

  • Online ISBN: 978-1-59745-223-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics