Skip to main content

Construction of Unmarked Deletion Mutants in Mycobacteria

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 465))

Abstract

Site-specific recombinases such as the Saccharomyces cerevisiae Flp and the P1 phage Cre proteins have been increasingly used for the construction of unmarked deletions in bacteria. Both systems consist of an antibiotic resistance gene flanked by recognition sites in direct orientation and a curable plasmid for temporary expression of the respective recombinase gene. In this chapter, we describe strategies and methods of how to use sequence-specific recombination mediated by Flp and Cre to construct mutants of Mycobacterium smegmatis, Mycobacterium bovis BCG, and Mycobacterium tuberculosis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pelicic, V., Jackson, M., Reyrat, J. M., Jacobs, W. R. Jr., Gicquel, B., and Guilhot, C. (1997) Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 94, 10955–10960.

    Article  PubMed  CAS  Google Scholar 

  2. Bardarov, S., Bardarov S. Jr., Pavelka M. S. Jr., Sambandamurthy, V., Larsen, M., Tufariello, J., Chan, J., Hatfull, G., and Jacobs W. R. Jr. (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148, 3007–3017.

    PubMed  CAS  Google Scholar 

  3. Machowski, E. E., Dawes, S., and Mizrahi, V. (2005) TB tools to tell the tale—molecular genetic methods for mycobacterial research. Int J Biochem Cell Biol 37, 54–68.

    Article  PubMed  CAS  Google Scholar 

  4. Stephan, J., Stemmer, V., and Niederweis, M. (2004) Consecutive gene deletions in Mycobacterium smegmatis using the yeast FLP recombinase. Gene 343, 181–190.

    Article  PubMed  CAS  Google Scholar 

  5. Kana, B. D., and Mizrahi, V. (2004) Molecular genetics of Mycobacterium tuberculosis in relation to the discovery of novel drugs and vaccines. Tuberculosis 84, 63–75.

    Article  PubMed  Google Scholar 

  6. Merlin, C., McAteer, S., and Masters, M. (2002) Tools for characterization of Escherichia coli genes of unknown function. J Bacteriol 184, 4573–4581.

    Article  PubMed  CAS  Google Scholar 

  7. Hasan, N., Koob, M., and Szybalski, W. (1994) Escherichia coli genome targeting, I. Cre-lox-mediated in vitro generation of ori- plasmids and their in vivo chromosomal integration and retrieval. Gene 150, 51–56.

    Article  PubMed  CAS  Google Scholar 

  8. Tsuda, M. (1998) Use of a transposon-encoded site-specific resolution system for construction of large and defined deletion mutations in bacterial chromosome. Gene 207, 33–41.

    Article  PubMed  CAS  Google Scholar 

  9. Denome, S. A., Elf, P. K., Henderson, T. A., Nelson, D. E., and Young, K. D. (1999) Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J Bacteriol 181, 3981–3993.

    PubMed  CAS  Google Scholar 

  10. Malaga, W., Perez, E., and Guilhot, C. (2003) Production of unmarked mutations in mycobacteria using site-specific recombination. FEMS Microbiol Lett 219, 261–268.

    Article  PubMed  CAS  Google Scholar 

  11. Stephan, J., Bender, J., Wolschendorf, F., Hoffmann, C., Roth, E., Mailander, C., Engelhardt, H., and Niederweis, M. (2005) The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol Microbiol 58, 714–730.

    Article  PubMed  CAS  Google Scholar 

  12. Sander, P., Meier, A., and Boettger, E. C. (1995) rpsL+: a dominant selectable marker for gene replacement in mycobacteria. Mol Microbiol 16, 991–1000.

    Article  PubMed  CAS  Google Scholar 

  13. Guilhot, C., Gicquel, B. and Martin, C. (1992) Temperature-sensitive mutants of the Mycobacterium plasmid pAL5000. FEMS Microbiol Lett 98, 181–186.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant AI063432 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Niederweis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Song, H., Wolschendorf, F., Niederweis, M. (2009). Construction of Unmarked Deletion Mutants in Mycobacteria. In: Parish, T., Brown, A. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 465. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-207-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-207-6_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-889-8

  • Online ISBN: 978-1-59745-207-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics