Advertisement

Pharmacogenetics of Membrane Transporters

A Review of Current Approaches
  • Tristan M. Sissung
  • Erin R. Gardner
  • Rui Gao
  • William D. Figg
Part of the Methods in Molecular Biology™ book series (MIMB, volume 448)

Summary

This chapter provides a review of the pharmacogenetics of mem brane transporters, including adenosine triphosphate-binding cassette (ABC) transporters and organic anion transporting proteins (OATPs). Membrane trans porters are heavily involved in drug disposition by actively transporting substrate drugs between organs and tissues. As such, polymorphisms in the genes encoding these proteins may have a significant effect on the absorption, distribution, metabo lism, and excretion of compounds. The techniques used to identify substrates and inhibitors of these proteins and subsequently assess the effect of genetic mutation on transport, both in vitro and in vivo, are outlined and discussed. Finally, studies linking transporter genotype with clinical outcomes are discussed.

Keywords

ABCB1 ABCC1 ABCC2 ABCG2 OATP1B1 OATP1B3 polymor phisms transport 

References

  1. 1.
    Borst, P., Evers, R., Kool, M., and Wijnholds, J. (2000) A family of drug transporters: the multidrug resistance-associated proteins. J. Natl. Cancer Inst. 92, 1295–1302.CrossRefPubMedGoogle Scholar
  2. 2.
    Dean, M., Rzhetsky, A., and Allikmets, R. (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11, 1156–1166.CrossRefPubMedGoogle Scholar
  3. 3.
    Gottesman, M. M., and Ambudkar, S. V. (2001) Overview: ABC transporters and human dis ease. J. Bioenerg. Biomembr. 33, 453–458.CrossRefPubMedGoogle Scholar
  4. 4.
    Lepper, E. R., Nooter, K., Verweij, J., Acharya, M. R., Figg, W. D., and Sparreboom, A. (2005) Mechanisms of resistance to anticancer drugs: the role of the polymorphic ABC trans porters ABCB1 and ABCG2. Pharmacogenomics. 6, 115–138.CrossRefPubMedGoogle Scholar
  5. 5.
    Fojo, A. T., Shen, D. W., Mickley, L. A., Pastan, I., and Gottesman, M. M. (1987) Intrinsic drug resistance in human kidney cancer is associated with expression of a human multidrug resistance gene. J. Clin. Oncol. 5, 1922–1927.PubMedGoogle Scholar
  6. 6.
    Maliepaard, M., Scheffer, G. L., Faneyte, I. F., et al. (2001) Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 61, 3458–3464.PubMedGoogle Scholar
  7. 7.
    Schellens, J. H., Malingre, M. M., Kruijtzer, C. M., et al. H. (2000) Modulation of oral bioavailability of anticancer drugs: from mouse to man. Eur. J. Pharm. Sci. 12, 103–110.CrossRefPubMedGoogle Scholar
  8. 8.
    Schinkel, A. H., Mayer, U., Wagenaar, E., et al. (1997) Normal viability and altered pharma-cokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc. Natl. Acad. Sci. U. S. A. 94, 4028–4033.CrossRefPubMedGoogle Scholar
  9. 9.
    Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M. M., Pastan, I., and Willingham, M. C. (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. U. S. A. 84, 7735–7738.CrossRefPubMedGoogle Scholar
  10. 10.
    Gottesman, M. M., and Ambudkar, S. V. (2001) Overview: ABC transporters and human dis ease. J. Bioenerg. Biomembr. 33, 453–458.CrossRefPubMedGoogle Scholar
  11. 11.
    Xiao, J. J., Foraker, A. B., Swaan, P. W., et al. (2005) Efflux of depsipeptide FK228 (FR901228, NSC-630176) is mediated by P-glycoprotein and multidrug resistance-associated protein 1. J. Pharmacol. Exp. Ther. 313, 268–276.CrossRefPubMedGoogle Scholar
  12. 12.
    Chaudhary, P. M., and Roninson, I. B. (1991) Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell. 66, 85–94.CrossRefPubMedGoogle Scholar
  13. 13.
    Eichelbaum, M., Fromm, M. F., and Schwab, M. (2004) Clinical aspects of the MDR1 (ABCB1) gene polymorphism. Ther. Drug Monit. 26, 180–185.CrossRefPubMedGoogle Scholar
  14. 14.
    Fromm, M. F. (2004) Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol. Sci. 25, 423–429.CrossRefPubMedGoogle Scholar
  15. 15.
    Meissner, K., Sperker, B., Karsten, C., et al. (2002) Expression and localization of P-glycoprotein in human heart: effects of cardiomyopathy. J. Histochem. Cytochem. 50, 1351–1356.PubMedGoogle Scholar
  16. 16.
    Rao, V. V., Dahlheimer, J. L., Bardgett, M. E., et al. (1999) Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood cerebrospinal-fluid drug–permeability barrier. Proc. Natl. Acad. Sci. U. S. A. 96, 3900–3905.CrossRefPubMedGoogle Scholar
  17. 17.
    Saito, T., Zhang, Z. J., Ohtsubo, T., et al. (2001) Homozygous disruption of the mdrla P-glycoprotein gene affects blood-nerve barrier function in mice administered with neurotoxic drugs. Acta Otolaryngol. 121, 735–742.CrossRefPubMedGoogle Scholar
  18. 18.
    Wijnholds, J., deLange, E. C., Scheffer, G. L., et al. (2000) Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood–cerebrospinal fluid bar rier. J. Clin. Invest. 105, 279–285.CrossRefPubMedGoogle Scholar
  19. 19.
    Borst, P., Evers, R., Kool, M., and Wijnholds, J. (1999) The multidrug resistance protein fam ily. Biochim. Biophys. Acta. 1461, 347–357.CrossRefPubMedGoogle Scholar
  20. 20.
    Cascorbi, I. (2006) Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol. Ther. 112, 457–473.CrossRefPubMedGoogle Scholar
  21. 21.
    Deeley, R. G., and Cole, S. P. (2006) Substrate recognition and transport by multidrug resis tance protein 1 (ABCC1). FEBS Lett. 580, 1103–1111.CrossRefPubMedGoogle Scholar
  22. 22.
    Ho, R. H., and Kim, R. B. (2005) Transporters and drug therapy: implications for drug disposi tion and disease. Clin. Pharmacol. Ther. 78, 260–277.CrossRefPubMedGoogle Scholar
  23. 23.
    Smith, N. F., Figg, W. D., and Sparreboom, A. (2005) Role of the liver-specific transporters OATP1B1 and OATP1B3 in governing drug elimination. Expert Opin. Drug Metab. Toxicol. 1, 429–445.CrossRefPubMedGoogle Scholar
  24. 24.
    Kurata, Y., Ieiri, I., Kimura, M., et al. (2002) Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin. Pharmacol. Ther. 72, 209–219.CrossRefPubMedGoogle Scholar
  25. 25.
    Meissner, K., Sperker, B., Karsten, C., et al. (2002) Expression and localization of P-glycoprotein in human heart: effects of cardiomyopathy. J. Histochem. Cytochem. 50, 1351–1356.PubMedGoogle Scholar
  26. 26.
    Tanabe, M., Ieiri, I., Nagata, N., et al. (2001) Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J. Pharmacol. Exp. Ther. 297, 1137–1143.PubMedGoogle Scholar
  27. 27.
    Yi, S. Y., Hong, K. S., Lim, H. S., et al. (2004) A variant 2677A allele of the MDR1 gene affects fexofenadine disposition. Clin. Pharmacol. Ther. 76, 418–427.CrossRefPubMedGoogle Scholar
  28. 28.
    Sun, J., He, Z. G., Cheng, G., Wang, S. J., Hao, X. H., and Zou, M. J. (2004) Multidrug resist ance P-glycoprotein: crucial significance in drug disposition and interaction. Med. Sci. Monit. 10, RA5–RA14.PubMedGoogle Scholar
  29. 29.
    Imai, Y., Nakane, M., Kage, K., et al. (2002) C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol. Cancer Ther. 1, 611–616.PubMedGoogle Scholar
  30. 30.
    Kobayashi, D., Ieiri, I., Hirota, T., et al. (2005) Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab. Dispos. 33, 94–101.CrossRefPubMedGoogle Scholar
  31. 31.
    Kolwankar, D., Glover, D. D., Ware, J. A., and Tracy, T. S. (2005) Expression and function of ABCB1 and ABCG2 in human placental tissue. Drug Metab. Dispos. 33, 524–529.CrossRefPubMedGoogle Scholar
  32. 32.
    Kondo, C., Suzuki, H., Itoda, M., et al. (2004) Functional analysis of SNPs variants of BCRP/ ABCG2. Pharm. Res. 21, 1895–1903.CrossRefPubMedGoogle Scholar
  33. 33.
    Sparreboom, A., Gelderblom, H., Marsh, S., et al. (2004) Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype. Clin. Pharmacol. Ther. 76, 38–44.CrossRefPubMedGoogle Scholar
  34. 34.
    Mizuarai, S., Aozasa, N., and Kotani, H. (2004) Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int. J. Cancer 109, 238–246.CrossRefPubMedGoogle Scholar
  35. 35.
    de Jong, F. A., Marsh, S., Mathijssen, R. H., et al. (2004) ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin. Cancer Res. 10, 5889–5894.CrossRefPubMedGoogle Scholar
  36. 36.
    Imai, Y., Nakane, M., Kage, K., et al. (2002) C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol. Cancer Ther. 1, 611–616.PubMedGoogle Scholar
  37. 37.
    Kondo, C., Suzuki, H., Itoda, M., et al. (2004) Functional analysis of SNPs variants of BCRP/ ABCG2. Pharm. Res. 21, 1895–1903.CrossRefPubMedGoogle Scholar
  38. 38.
    Allen, J. D., Jackson, S. C., and Schinkel, A. H. (2002) A mutation hot spot in the BCRPl (ABCG2) multidrug transporter in mouse cell lines selected for doxorubicin resistance. Cancer Res. 62, 2294–2299.PubMedGoogle Scholar
  39. 39.
    Honjo, Y., Hrycyna, C. A., Yan, Q. W., et al. (2001) Acquired mutations in the MXR/BCRP/ ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res. 61, 6635–6639.PubMedGoogle Scholar
  40. 40.
    Robey, R. W., Honjo, Y., Morisaki, K., et al. (2003) Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br. J. Cancer 89, 1971–1978.CrossRefPubMedGoogle Scholar
  41. 41.
    Robey, R. W., Steadman, K., Polgar, O., et al. (2004) Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Res. 64, 1242–1246.CrossRefPubMedGoogle Scholar
  42. 42.
    Letourneau, I. J., Deeley, R. G., and Cole, S. P. (2005) Functional characterization of non synonymous single nucleotide polymorphisms in the gene encoding human multidrug resist ance protein 1 (MRP1/ABCC1). Pharmacogenet. Genomics. 15, 647–657.CrossRefPubMedGoogle Scholar
  43. 43.
    Oselin, K., Mrozikiewicz, P. M., Gaikovitch, E., Pahkla, R., and Roots, I. (2003) Frequency of MRP1 genetic polymorphisms and their functional significance in Caucasians: detec tion of a novel mutation G816A in the human MRP1 gene. Eur. J. Clin. Pharmacol. 59, 347–350.CrossRefPubMedGoogle Scholar
  44. 44.
    Tirona, R. G., Leake, B. F., Merino, G., and Kim, R. B. (2001) Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J. Biol. Chem. 276, 35669–35675.CrossRefPubMedGoogle Scholar
  45. 45.
    Nozawa, T., Nakajima, M., Tamai, I., et al. (2002) Genetic polymorphisms of human organic anion transporters OATP-C (SLC21A6) and OATP-B (SLC21A9): allele frequencies in the Japanese population and functional analysis. J. Pharmacol. Exp. Ther. 302, 804–813.CrossRefPubMedGoogle Scholar
  46. 46.
    Colburn, W. A. (2003) Biomarkers in drug discovery and development: from target identifica tion through drug marketing. J. Clin. Pharmacol. 43, 329–341.CrossRefPubMedGoogle Scholar
  47. 47.
    Cole, S. P., Bhardwaj, G., Gerlach, J. H., et al. (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 258, 1650–1654.CrossRefPubMedGoogle Scholar
  48. 48.
    Hesselink, D. A., van Schaik, R. H., van der Heiden, I. P., et al. (2003) Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibi tors cyclosporine and tacrolimus. Clin. Pharmacol. Ther. 74, 245–254.CrossRefPubMedGoogle Scholar
  49. 49.
    Noe, B., Hagenbuch, B., Stieger, B., and Meier, P. J. (1997) Isolation of a multispecific organic anion and cardiac glycoside transporter from rat brain. Proc. Natl. Acad. Sci. U. S. A. 94, 10346–10350.CrossRefPubMedGoogle Scholar
  50. 50.
    Cvetkovic, M., Leake, B., Fromm, M. F., Wilkinson, G. R., and Kim, R. B. (1999) OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab. Dispos. 27, 866–871.PubMedGoogle Scholar
  51. 51.
    Aszalos, A. (2004) P-glycoprotein-based drug-drug interactions: preclinical methods and rel evance to clinical observations. Arch. Pharm. Res. 27, 127–135.CrossRefPubMedGoogle Scholar
  52. 52.
    Smith, N. F., Acharya, M. R., Desai, N., Figg, W. D., and Sparreboom, A. (2005) Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol. Ther. 4, 815–818.CrossRefPubMedGoogle Scholar
  53. 53.
    Hitzl, M., Drescher, S., van der Kuip, H., et al. (2001) The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56† natural killer cells. Pharmacogenetics. 11, 293–298.CrossRefPubMedGoogle Scholar
  54. 54.
    Schaefer, M., Roots, I., and Gerloff, T. (2005) In vitro transport characteristics discriminate wildtype mdr1 (abcb1) from ala893ser and ala893thr polymorphisms. Eur. J. Clin. Pharmacol. 61, 718.Google Scholar
  55. 55.
    Ishikawa, T., Sakurai, A., Kanamori, Y., et al. (2005) High-speed screening of human ATP-binding cassette transporter function and genetic polymorphisms: new strategies in pharma-cogenomics. Methods Enzymol. 400, 485–510.CrossRefPubMedGoogle Scholar
  56. 56.
    Morisaki, K., Robey, R. W., Ozvegy-Laczka, C., et al. (2005) Single nucleotide polymorphisms modify the transporter activity of ABCG2. Cancer Chemother. Pharmacol. 56, 161–172.CrossRefPubMedGoogle Scholar
  57. 57.
    Robey, R. W., Honjo, Y., Morisaki, K., et al. (2003) Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br. J. Cancer. 89, 1971–1978.CrossRefPubMedGoogle Scholar
  58. 58.
    Zhang, Y., Gupta, A., Wang, H., et al. (2005) BCRP transports dipyridamole and is inhibited by calcium channel blockers. Pharm. Res. 22, 2023–2034.CrossRefPubMedGoogle Scholar
  59. 59.
    Nakamura, Y., Oka, M., Soda, H., et al. (2005) Gefitinib (“Iressa,” ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ ABCG2-mediated drug resistance. Cancer Res. 65, 1541–1546.CrossRefPubMedGoogle Scholar
  60. 60.
    Iwai, M., Suzuki, H., Ieiri, I., Otsubo, K., and Sugiyama, Y. (2004) Functional analysis of sin gle nucleotide polymorphisms of hepatic organic anion transporter OATP1B1 (OATP-C). Pharmacogenetics. 14, 749–757.CrossRefPubMedGoogle Scholar
  61. 61.
    Michalski, C., Cui, Y., Nies, A. T., et al. (2002) A naturally occurring mutation in the SLC21A6 gene causing impaired membrane localization of the hepatocyte uptake transporter. J. Biol. Chem. 277, 43058–43063.CrossRefPubMedGoogle Scholar
  62. 62.
    Nozawa, T., Minami, H., Sugiura, S., Tsuji, A., and Tamai, I. (2005) Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymor phisms. Drug Metab. Dispos. 33, 434–439.CrossRefPubMedGoogle Scholar
  63. 63.
    Tirona, R. G., Leake, B. F., Wolkoff, A. W., and Kim, R. B. (2003) Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J. Pharmacol. Exp. Ther. 304, 223–228.CrossRefPubMedGoogle Scholar
  64. 64.
    Hoffmeyer, S., Burk, O., von Richter, O., et al. (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. U. S. A. 97, 3473–3478.CrossRefPubMedGoogle Scholar
  65. 65.
    Song, P., Lamba, J. K., Zhang, L., et al. (2006) G2677T and C3435T genotype and haplo type are associated with hepatic ABCB1 (MDR1) expression. J. Clin. Pharmacol. 46, 373–379.CrossRefPubMedGoogle Scholar
  66. 66.
    Meissner, K., Jedlitschky, G., Meyer zu Schwabedissen, H., et al. (2004) Modulation of multidrug resistance P-glycoprotein 1 (ABCB1) expression in human heart by hereditary poly morphisms. Pharmacogenetics. 14, 381–385.CrossRefPubMedGoogle Scholar
  67. 67.
    Wang, D., Johnson, A. D., Papp, A. C., Kroetz, D. L., and Sadee, W. (2005) Multidrug resist ance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet. Genomics. 15, 693–704.CrossRefPubMedGoogle Scholar
  68. 68.
    Zamber, C. P., Lamba, J. K., Yasuda, K., et al. (2003) Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics. 13, 19–28.CrossRefPubMedGoogle Scholar
  69. 69.
    Kimchi-Sarfaty, C., Gribar, J. J., and Gottesman, M. M. (2002) Functional characterization of coding polymorphisms in the human MDR1 gene using a vaccinia virus expression system. Mol. Pharmacol. 62, 1–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Lin, J. H., and Yamazaki, M. (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin. Pharmacokinet. 42, 59–98.CrossRefPubMedGoogle Scholar
  71. 71.
    Schinkel, A. H., Smit, J. J., van Tellingen, O., et al. (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell. 77, 491–502.CrossRefPubMedGoogle Scholar
  72. 72.
    Sparreboom, A., van Asperen, J., Mayer, U., et al. (1997) Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. U. S. A. 94, 2031–2035.CrossRefPubMedGoogle Scholar
  73. 73.
    Smit, J. W., Huisman, M. T., van Tellingen, O., Wiltshire, H. R., and Schinkel, A. H. (1999) Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. J. Clin. Invest. 104, 1441–1447.CrossRefPubMedGoogle Scholar
  74. 74.
    Allen, J. D., Brinkhuis, R. F., van Deemter, L., Wijnholds, J., and Schinkel, A. H. (2000) Extensive contribution of the multidrug transporters P-glycoprotein and Mrp1 to basal drug resistance. Cancer Res. 60, 5761–5766.PubMedGoogle Scholar
  75. 75.
    Allen, J. D., Brinkhuis, R. F., Wijnholds, J., and Schinkel, A. H. (1999) The mouse Bcrp1/ Mxr/Abcp gene: amplification and overexpression in cell lines selected for resistance to topo tecan, mitoxantrone, or doxorubicin. Cancer Res. 59, 4237–4241.PubMedGoogle Scholar
  76. 76.
    Gallo, J. M., Li, S., Guo, P., Reed, K., and Ma, J. (2003) The effect of P-glycoprotein on pacli taxel brain and brain tumor distribution in mice. Cancer Res. 63, 5114–5117.PubMedGoogle Scholar
  77. 77.
    Ejsing, T. B., Pedersen, A. D., and Linnet, K. (2005) P-glycoprotein interaction with risperi done and 9-OH-risperidone studied in vitro, in knock-out mice and in drug–drug interaction experiments. Hum. Psychopharmacol. 20, 493–500.CrossRefPubMedGoogle Scholar
  78. 78.
    Doran, A., Obach, R. S., Smith, B. J., et al. (2005) The impact of P-glycoprotein on the dispo sition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab. Dispos. 33, 165–174.CrossRefPubMedGoogle Scholar
  79. 79.
    Johne, A., Kopke, K., Gerloff, T., et al. (2002) Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin. Pharmacol. Ther. 72, 584–594.CrossRefPubMedGoogle Scholar
  80. 80.
    Verstuyft, C., Schwab, M., Schaeffeler, E., et al. (2003) Digoxin pharmacokinetics and MDR1 genetic polymorphisms. Eur. J. Clin. Pharmacol. 58, 809–812.PubMedGoogle Scholar
  81. 81.
    Sakaeda, T. (2005) MDR1 genotype-related pharmacokinetics: fact or fiction? Drug Metab. Pharmacokinet. 20, 391–414.CrossRefPubMedGoogle Scholar
  82. 82.
    Lin, S. K., Su, S. F., and Pan, C. H. (2006) Higher plasma drug concentration in clozapinetreated schizophrenic patients with side effects of obsessive/compulsive symptoms. Ther. Drug Monit. 28, 303–307.CrossRefPubMedGoogle Scholar
  83. 83.
    Sissung, T. M., Mross, K., Steinberg, S. M., et al. (2006) Association of ABCB1 geno types with paclitaxel-mediated peripheral neuropathy and neutropenia. Eur. J. Cancer. 42, 2893–2896.CrossRefPubMedGoogle Scholar
  84. 84.
    Niemi, M., Schaeffeler, E., Lang, T., et al. (2004) High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics. 14, 429–440.CrossRefPubMedGoogle Scholar
  85. 85.
    Niemi, M., Neuvonen, P. J., Hofmann, U., et al. (2005) Acute effects of pravastatin on choles terol synthesis are associated with SLCO1B1 (encoding OATP1B1) haplotype *17. Pharmacogenet. Genomics. 15, 303–309.CrossRefPubMedGoogle Scholar
  86. 86.
    Tachibana-Iimori, R., Tabara, Y., Kusuhara, H., et al. (2004) Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab. Pharmacokinet. 19, 375–380.CrossRefPubMedGoogle Scholar
  87. 87.
    Schaefer, M., Roots, I., and Gerloff, T. (2006) In-vitro transport characteristics discriminate wild-type ABCB1 (MDR1) from ALA893SER and ALA893THR polymorphisms. Pharmacogenet. Genomics. 16, 855–861.CrossRefPubMedGoogle Scholar
  88. 88.
    Kim, R. B., Leake, B. F., Choo, E. F., et al. (2001) Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin. Pharmacol. Ther. 70, 189–199.CrossRefPubMedGoogle Scholar
  89. 89.
    Goh, B. C., Lee, S. C., Wang, L. Z., et al. (2002) Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and geno typing strategies. J. Clin. Oncol. 20, 3683–3690.CrossRefPubMedGoogle Scholar
  90. 90.
    Isla, D., Sarries, C., Rosell, R., et al. (2004) Single nucleotide polymorphisms and outcome in docetaxel-cisplatin-treated advanced non-small-cell lung cancer. Ann. Oncol. 15, 1194–1203.CrossRefPubMedGoogle Scholar
  91. 91.
    Puisset, F., Chatelut, E., Dalenc, F., et al. (2004) Dexamethasone as a probe for docetaxel clear ance. Cancer Chemother. Pharmacol. 54, 265–272.CrossRefPubMedGoogle Scholar
  92. 92.
    Wils, P., Phung-Ba, V., Warnery, A., et al. (1994) Polarized transport of docetaxel and vinblas tine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem. Pharmacol. 48, 1528–1530.CrossRefPubMedGoogle Scholar
  93. 93.
    Sparreboom, A., Loos, W. J., Burger, H., et al. (2005) Effect of ABCG2 genotype on the oral bioavailability of topotecan. Cancer Biol. Ther. 4, 650–658.PubMedGoogle Scholar
  94. 94.
    Gardner, E. R., Burger, H., van Schaik, R. H., et al. (2006) Association of enzyme and trans porter genotypes with the pharmacokinetics of imatinib. Clin. Pharmacol. Ther. 80, 192–201.CrossRefPubMedGoogle Scholar
  95. 95.
    Mwinyi, J., Johne, A., Bauer, S., Roots, I., and Gerloff, T. (2004) Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin. Pharmacol. Ther. 75, 415–421.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tristan M. Sissung
    • 1
  • Erin R. Gardner
    • 2
  • Rui Gao
    • 1
  • William D. Figg
    • 1
  1. 1.Clinical Pharmacology Program, Medical Oncology Branch, Center for Cancer ResearchNational Cancer InstituteBethesdaMaryland
  2. 2.Clinical Pharmacology ProgramSAIC-Frederick Inc.NCI-FrederickMaryland

Personalised recommendations