Confounding in Genetic Association Studies and Its Solutions

  • Donglei Hu
  • Elad Ziv
Part of the Methods in Molecular Biology™ book series (MIMB, volume 448)


An association study can be used to investigate how individuals with unique genetic variants respond to a drug treatment. In an association study, individuals may come from different ethnic groups or an admixed population. The heterogeneity of genetic backgrounds among individuals in association studies may lead to false-positive or false-negative results. Confounding caused by population structure and recent admixture may be one major factor that contributes to the lack of replication of association study results. Confounding can be detected and adjusted. Major methods that adjust for population stratification are described and explained in this chapter. Their advantages and disadvantages are discussed.


Admixture association study confounding human genetics population structure 


  1. 1.
    Risch, N., and Merikangas, K. (1996) The future of genetic studies of complex human diseases. Science. 273, 1516–1517.CrossRefPubMedGoogle Scholar
  2. 2.
    Bowcock, A.M., Ruiz-Linares, A., Tomfohrde, J., Minch, E., Kidd, J.R., and Cavalli-Sforza, L.L. (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 368, 455–457.CrossRefPubMedGoogle Scholar
  3. 3.
    Mountain, J.L., and Cavalli-Sforza, L.L. (1997) Multilocus genotypes, a tree of individuals, and human evolutionary history. Am. J. Hum. Genet. 61, 705–718.CrossRefPubMedGoogle Scholar
  4. 4.
    Rosenberg, N.A., Pritchard, J.K., Weber, J.L., et al. (2002) Genetic structure of human populations. Science. 298, 2381–2385.CrossRefPubMedGoogle Scholar
  5. 5.
    Rosenberg, N.A., Mahajan, S., Ramachandran, S., Zhao, C., Pritchard, J.K., and Feldman, M.W. (2005) Clines, clusters, and the effect of study design on the inference of human population structure. PLoS Genet. 1, e70.CrossRefPubMedGoogle Scholar
  6. 6.
    Parra, E.J., Marcini, A., Akey, J., et al. (1998) Estimating African American admixture proportions by use of population-specific alleles. Am. J. Hum. Genet. 63, 1839–1851.CrossRefPubMedGoogle Scholar
  7. 7.
    Hanis, C.L., Hewett-Emmett, D., Bertin, T.K., and Schull, W.J. (1991) Origins of U.S. Hispanics. Implications for diabetes. Diabetes Care. 14, 618–627.CrossRefPubMedGoogle Scholar
  8. 8.
    Ziv, E., and Burchard, E.G. (2003) Human population structure and genetic association studies. Pharmacogenomics. 4, 431–441.CrossRefPubMedGoogle Scholar
  9. 9.
    Redden, D.T., and Allison, D.B. (2006) The effect of assortative mating upon genetic association studies: spurious associations and population substructure in the absence of admixture. Behav. Genet. 36, 678–686.CrossRefPubMedGoogle Scholar
  10. 10.
    Knowler, W.C., Wiliams, R.C., Pettitt, D.J., and Steinberg, A.G. (1998) Gm3:5,13,14 and type 2 diabetes mellitus: an association in American Indians with genetic admixture. Am. J. Hum. Genet. 43, 520–526.Google Scholar
  11. 11.
    Pritchard, J.K., and Rosenberg, N.A. (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am. J. Hum. Genet. 65, 220–228.CrossRefPubMedGoogle Scholar
  12. 12.
    Spielman, R.S., McGinnis, R.E., and Ewens, W.J. (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516.PubMedGoogle Scholar
  13. 13.
    Devlin, B., and Roeder, K. (1999) Genomic control for association studies. Biometrics. 55, 997–1004. Available at: control_softwar.htm.CrossRefPubMedGoogle Scholar
  14. 14.
    Curtis, D. (1997) Use of siblings as controls in case-control studies. Ann. Hum. Genet. 61, 319–333.CrossRefPubMedGoogle Scholar
  15. 15.
    Dries, D.L., Victor, R.G., Rame, J.E., et al. (2005) Corin gene minor allele defined by 2 missense mutations is common in blacks and associated with high blood pressure and hypertension. Circulation. 112, 2403–2410.CrossRefPubMedGoogle Scholar
  16. 16.
    Clayton, D.G., Walkerr, N.M., Smyth, Deborah., et al. (2005) Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat. Genet. 37, 1243–1246.CrossRefPubMedGoogle Scholar
  17. 17.
    Marchini, J., Cardon, L.R., Phillips, M.S., Donnelly, P. (2004) The effects of human population structure on large genetic association studies. Nat. Genet. 36, 512–517.CrossRefPubMedGoogle Scholar
  18. 18.
    Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., and Reich, D. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909. Available at:∼reich/EIGENSTRAT.htm.CrossRefPubMedGoogle Scholar
  19. 19.
    Pritchard, J.K., Stephens, M., and Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics. 155, 945–959. Available at: http://pritch.bsd.uchicago. edu/structure.html.PubMedGoogle Scholar
  20. 20.
    Falush, D., Stephens, M., and Pritchard, J.K. (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 164, 1567–1587.PubMedGoogle Scholar
  21. 21.
    Pritchard, J.K., Stephens, M., Rosenberg, N.A., and Donnelly, P. (2000) Association mapping in structured populations. Am. J. Hum. Genet. 67, 170–181.CrossRefPubMedGoogle Scholar
  22. 22.
  23. 23.
    Mckeigue, P.M., Carpenter, J., Parra, E.J., and Shriver, M.D. (2000) Estimation of admixture and detection of linkage in admixed populations by a Bayesian approach: application to African-American populations. Ann. Hum. Genet. 64, 171–186.CrossRefPubMedGoogle Scholar
  24. 24.
    Hoggart, C.J., Parra, E.J., Shriver, M.D., et al. (2003) Control of confounding of genetic associations in stratified populations. Am. J. Hum. Genet. 72, 1492–1504.CrossRefPubMedGoogle Scholar
  25. 25.
    Hoggart, C.J., Shriver, M.D., Kittles, R.A., Clayton, D.G., and Mckeigue, P.M. (2004) Design and analysis of admixture mapping studies. Am. J. Hum. Genet. 74, 965–978.CrossRefPubMedGoogle Scholar
  26. 26.
    McKeigue, P.M. (2005) Prospects for admixture mapping of complex traits. Am. J. Hum. Genet. 76, 1–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Wu, B., Liu, N., and Zhao, H. (2006) PSMIX: an R package for population structure inference via maximum likelihood method. BMC Bioinformatics. 7, 317. Available at: Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Donglei Hu
    • 1
  • Elad Ziv
    • 1
  1. 1.Institute for Human Genetics, Comprehensive Cancer Center, Department of MedicineUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations