Skip to main content

Human Epithelial Model Systems for the Study of Candida infections In Vitro: Part II. Histologic Methods for Studying Fungal Invasion

  • Protocol
Host-Pathogen Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 470))

Abstract

Although the role of invasion in the virulence of Candida albicans has been demonstrated, the mechanism that governs fungal invasion is not fully understood. Among the tools that exist to fill these gaps in knowledge, in vitro tissue models based on reconstituted human epithelia (RHE) have already been developed. Such models are designed to study more reproducably the fungus-host relationship, as they eliminate the complexity and variability found in vivo. Herein we describe the preparation of these RHE and their application in study of the invasion properties of C. albicans by further histologic processing and microscopic observation. For this purpose, different epithelial cell lines are grown on a collagen gel to build up models of intestinal (Caco-2 cell line), vaginal (A431 cell line), and oral (TR146 cell line) mucosa. The use of these in vitro models applied to test the invasiveness of C. albicans strains (clinical isolates or gene deleted mutants) and to identify changes in gene expression during the invasion of the RHE will help to advance our knowledge of pathogenesis and to study specific mechanisms used by C. albicans to adapt to changing environments present in different epithelia. Furthermore, because these models are useful to study the host response during the challenge with the pathogen, they will also offer important new insights into host cell biology and identify new targets for treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calderone, R.A. and Fonzi, W.A. (2001) Virulence factors of Candida albicans. Trends Microbiol. 9, 327.

    Article  CAS  PubMed  Google Scholar 

  2. Braun, B.R. and Johnson, A.D. (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105.

    Article  CAS  PubMed  Google Scholar 

  3. Slutsky, B., Staebell, M., Anderson, J., Risen, L., Pfaller, M. and Soll, D.R. (1987) “White-opaque transition”: a second high-frequency switching system in Candida albicans. J. Bacteriol. 169, 189.

    CAS  PubMed  Google Scholar 

  4. Fu, Y., Ibrahim, A.S., Sheppard, D.C., Chen, Y.C., French, S.W., Cutler, J.E., Filler, S.G. and Edwards, J.E., Jr. (2002) Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol. Microbiol. 44, 61.

    Article  CAS  PubMed  Google Scholar 

  5. Sheppard, D.C., Yeaman, M.R., Welch, W.H., Phan, Q.T., Fu, Y., Ibrahim, A.S., Filler, S.G., Zhang, M., Waring, A.J. and Edwards, J.E., Jr. (2004) Functional and structural diversity in the Als protein family of Candida albicans. J. Biol. Chem. 279, 30480.

    Article  CAS  PubMed  Google Scholar 

  6. Davies, J.M., Stacey, A.J. and Gilligan, C.A. (1999) Candida albicans hyphal invasion: thigmotropism or chemotropism? FEMS Microbiol. Lett. 171, 245.

    Article  CAS  PubMed  Google Scholar 

  7. Ghannoum, M.A. (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev. 13, 122.

    Article  CAS  PubMed  Google Scholar 

  8. Ibrahim, A.S., Mirbod, F., Filler, S.G., Banno, Y., Cole, G.T., Kitajima, Y., Edwards, J.E., Jr., Nozawa, Y. and Ghannoum, M.A. (1995) Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect. Immun. 63, 1993.

    CAS  PubMed  Google Scholar 

  9. Naglik, J.R., Challacombe, S.J. and Hube, B. (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67, 400.

    Article  CAS  PubMed  Google Scholar 

  10. Schaller, M., Borelli, C., Korting, H.C. and Hube, B. (2005) Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48, 365.

    Article  CAS  PubMed  Google Scholar 

  11. Filler, S.G. and Sheppard, D.C. (2006) Fungal invasion of normally non-phagocytic host cells. PLoS. Pathog. 2, e129.

    Article  PubMed  Google Scholar 

  12. Chiang, L.Y., Sheppard, D.C., Bruno, V.M., Mitchell, A.P., Edwards, J.E., Jr. and Filler, S.G. (2007) Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis. Cell Microbiol. 9, 233.

    Article  CAS  PubMed  Google Scholar 

  13. Park, H., Myers, C.L., Sheppard, D.C., Phan, Q.T., Sanchez, A.A., Edwards, E. and Filler, S.G. (2005) Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol. 7, 499.

    Article  CAS  PubMed  Google Scholar 

  14. Zakikhany, K., Naglik, J.R., Schmidt-Westhausen, A., Holland, G., Schaller, M. and Hube, B. (2007) In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol. 9, 2938–54.

    Article  CAS  PubMed  Google Scholar 

  15. Allen, C.M. (1994) Animal models of oral candidiasis. A review. Oral Surg. Oral Med. Oral Pathol. 78, 216.

    Article  CAS  PubMed  Google Scholar 

  16. de Repentigny, L. (2004) Animal models in the analysis of Candida host-pathogen interactions. Curr. Opin. Microbiol. 7, 324.

    Article  PubMed  Google Scholar 

  17. McMillan, M.D. and Cowell, V.M. (1985) Experimental candidiasis in the hamster cheek pouch. Arch. Oral Biol. 30, 249.

    Article  CAS  PubMed  Google Scholar 

  18. Ekenna, O. and Sherertz, R.J. (1987) Factors affecting colonization and dissemination of Candida albicans from the gastrointestinal tract of mice. Infect. Immun. 55, 1558.

    CAS  PubMed  Google Scholar 

  19. Dieterich, C., Schandar, M., Noll, M., Johannes, F.J., Brunner, H., Graeve, T. and Rupp, S. (2002) In vitro reconstructed human epithelia reveal contributions of Candida albicans EFG1 and CPH1 to adhesion and invasion. Microbiology 148, 497.

    CAS  PubMed  Google Scholar 

  20. Korting, H.C., Patzak, U., Schaller, M. and Maibach, H.I. (1998) A model of human cutaneous candidosis based on reconstructed human epidermis for the light and electron microscopic study of pathogenesis and treatment. J. Infect. 36, 259.

    Article  CAS  PubMed  Google Scholar 

  21. Rouabhia, M., Schaller, M., Corbucci, C., Vecchiarelli, A., Prill, S.K., Giasson, L. and Ernst, J.F. (2005) Virulence of the fungal pathogen Candida albicans requires the five isoforms of protein mannosyltransferases. Infect. Immun. 73, 4571.

    Article  CAS  PubMed  Google Scholar 

  22. Schaller, M., Schafer, W., Korting, H.C. and Hube, B. (1998) Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol. Microbiol. 29, 605.

    Article  CAS  PubMed  Google Scholar 

  23. Bernhardt, J., Herman, D., Sheridan, M. and Calderone, R. (2001) Adherence and invasion studies of Candida albicans strains, using in vitro models of esophageal candidiasis. J. Infect. Dis. 184, 1170.

    Article  CAS  PubMed  Google Scholar 

  24. Cheng, G., Wozniak, K., Wallig, M.A., Fidel, P.L., Jr., Trupin, S.R. and Hoyer, L.L. (2005) Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect. Immun. 73, 1656.

    Article  CAS  PubMed  Google Scholar 

  25. Schaller, M., Bein, M., Korting, H.C., Baur, S., Hamm, G., Monod, M., Beinhauer, S. and Hube, B. (2003) The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium. Infect. Immun. 71, 3227.

    Article  CAS  PubMed  Google Scholar 

  26. Green, C.B., Cheng, G., Chandra, J., Mukherjee, P., Ghannoum, M.A. and Hoyer, L.L. (2004) RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 150, 267.

    Article  CAS  PubMed  Google Scholar 

  27. Jayatilake, J.A., Samaranayake, Y.H. and Samaranayake, L.P. (2005) An ultrastructural and a cytochemical study of candidal invasion of reconstituted human oral epithelium. J. Oral Pathol. Med. 34, 240.

    Article  CAS  PubMed  Google Scholar 

  28. Korting, H.C., Hube, B., Oberbauer, S., Januschke, E., Hamm, G., Albrecht, A., Borelli, C. and Schaller, M. (2003) Reduced expression of the hyphal-independent Candida albicans proteinase genes SAP1 and SAP3 in the efg1 mutant is associated with attenuated virulence during infection of oral epithelium. J. Med. Microbiol. 52, 623.

    Article  CAS  PubMed  Google Scholar 

  29. Schaller, M., Korting, H.C., Schafer, W., Bastert, J., Chen, W. and Hube, B. (1999) Secreted aspartic proteinase (Sap) activity contributes to tissue damage in a model of human oral candidosis. Mol. Microbiol. 34, 169.

    Article  CAS  PubMed  Google Scholar 

  30. Hube, B. and Naglik, J. (2001) Candida albicans proteinases: resolving the mystery of a gene family. Microbiology 147, 1997.

    CAS  PubMed  Google Scholar 

  31. Albrecht, A., Felk, A., Pichova, I., Naglik, J.R., Schaller, M., de Groot, P., Maccallum, D., Odds, F.C., Schafer, W., Klis, F., Monod, M. and Hube, B. (2006) Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J. Biol. Chem. 281, 688.

    Article  CAS  PubMed  Google Scholar 

  32. Heymann, P., Gerads, M., Schaller, M., Dromer, F., Winkelmann, G. and Ernst, J.F. (2002) The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect. Immun. 70, 5246.

    Article  CAS  PubMed  Google Scholar 

  33. Wilson, D., Tutulan-Cunita, A., Jung, W., Hauser, N.C., Hernandez, R., Williamson, T., Piekarska, K., Rupp, S., Young, T. and Stateva, L. (2007) Deletion of the high-affinity cAMP phosphodiesterase encoded by PDE2 affects stress responses and virulence in Candida albicans. Mol. Microbiol. 65, 841.

    Article  CAS  PubMed  Google Scholar 

  34. Villar, C.C., Kashleva, H., Mitchell, A.P. and Dongari-Bagtzoglou, A. (2005) Invasive phenotype of Candida albicans affects the host proinflammatory response to infection. Infect. Immun. 73, 4588.

    Article  CAS  PubMed  Google Scholar 

  35. Fidel, P.L., Jr. (2007) History and update on host defense against vaginal candidiasis. Am. J. Reprod. Immunol. 57, 2.

    Article  PubMed  Google Scholar 

  36. Saegusa, S., Totsuka, M., Kaminogawa, S. and Hosoi, T. (2004) Candida albicans and Saccharomyces cerevisiae induce interleukin-8 production from intestinal epithelial-like Caco-2 cells in the presence of butyric acid. FEMS Immunol. Med. Microbiol. 41, 227.

    Article  CAS  PubMed  Google Scholar 

  37. Schaller, M., Korting, H.C., Borelli, C., Hamm, G. and Hube, B. (2005) Candida albicans-secreted aspartic proteinases modify the epithelial cytokine response in an in vitro model of vaginal candidiasis. Infect. Immun. 73, 2758.

    Article  CAS  PubMed  Google Scholar 

  38. Schaller, M., Mailhammer, R., Grassl, G., Sander, C.A., Hube, B. and Korting, H.C. (2002) Infection of human oral epithelia with Candida species induces cytokine expression correlated to the degree of virulence. J. Invest. Dermatol. 118, 652.

    Article  CAS  PubMed  Google Scholar 

  39. Lu, Q., Jayatilake, J.A., Samaranayake, L.P. and Jin, L. (2006) Hyphal invasion of Candida albicans inhibits the expression of human beta-defensins in experimental oral candidiasis. J. Invest. Dermatol. 126, 2049.

    Article  CAS  PubMed  Google Scholar 

  40. Bernhardt, J., Bernhardt, H., Knoke, M. and Ludwig, K. (2004) Influence of voriconazole and fluconazole on reconstituted multilayered oesophageal epithelium infected by Candida albicans. Mycoses 47, 330.

    Article  CAS  PubMed  Google Scholar 

  41. Schaller, M., Laude, J., Bodewaldt, H., Hamm, G. and Korting, H.C. (2004) Toxicity and antimicrobial activity of a hydrocolloid dressing containing silver particles in an ex vivo model of cutaneous infection. Skin Pharmacol. Physiol. 17, 31.

    Article  CAS  PubMed  Google Scholar 

  42. Frank, C.F. and Hostetter, M.K. (2007) Cleavage of E-cadherin: a mechanism for disruption of the intestinal epithelial barrier by Candida albicans. Transl. Res. 149, 211.

    Article  CAS  PubMed  Google Scholar 

  43. Cole, G.T., Halawa, A.A. and Anaissie, E.J. (1996) The role of the gastrointestinal tract in hematogenous candidiasis: from the laboratory to the bedside. Clin. Infect. Dis. 22 (Suppl 2), S73.

    PubMed  Google Scholar 

  44. Andrutis, K.A., Riggle, P.J., Kumamoto, C.A. and Tzipori, S. (2000) Intestinal lesions associated with disseminated candidiasis in an experimental animal model. J. Clin. Microbiol. 38, 2317.

    CAS  PubMed  Google Scholar 

  45. Giard, D.J., Aaronson, S.A., Todaro, G.J., Arnstein, P., Kersey, J.H., Dosik, H. and Parks, W.P. (1973) In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 51, 1417.

    CAS  PubMed  Google Scholar 

  46. Rupniak, H.T., Rowlatt, C., Lane, E.B., Steele, J.G., Trejdosiewicz, L.K., Laskiewicz, B., Povey, S. and Hill, B.T. (1985) Characteristics of four new human cell lines derived from squamous cell carcinomas of the head and neck. J. Natl. Cancer Inst. 75, 621.

    CAS  PubMed  Google Scholar 

  47. Sobel, J.D. (2007) Vulvovaginal candidosis. Lancet 369, 1961.

    Article  PubMed  Google Scholar 

  48. Zaremba, M.L., Daniluk, T., Rozkiewicz, D., Cylwik-Rokicka, D., Kierklo, A., Tokajuk, G., Dabrowska, E., Pawinska, M., Klimiuk, A., Stokowska, W. and Abdelrazek, S. (2006) Incidence rate of Candida species in the oral cavity of middle-aged and elderly subjects. Adv. Med. Sci. 51 (Suppl 1), 236.

    Google Scholar 

  49. McManaus, G.N. (1989) Darstellung von paraplasmatischen substanzen, PAS reaktion nach McManaus. In: Boeck P., ed. Romeis, Mikroskopische Technik. Muenchen, Wien, Baltimore: Urban and Schwarzenberg, p. 394.

    Google Scholar 

  50. Papanicolaou, J.F.A. (1989) Faerbetechniken der zytodiagnostik, faerbung nach Papanicolaou. In: Boeck P., ed. Romeis, Mikroskopische Technik. Muenchen, Wien, Baltimore: Urban and Schwarzenberg, p. 646.

    Google Scholar 

  51. Schaller, M., Boeld, U., Oberbauer, S., Hamm, G., Hube, B. and Korting, H.C. (2004) Polymorphonuclear leukocytes (PMNs) induce protective Th1-type cytokine epithelial responses in an in vitro model of oral candidosis. Microbiology 150, 2807.

    Article  CAS  PubMed  Google Scholar 

  52. Kaewsrichan, J., Peeyananjarassri, K. and Kongprasertkit, J. (2006) Selection and identification of anaerobic lactobacilli producing inhibitory compounds against vaginal pathogens. FEMS Immunol. Med. Microbiol. 48, 75.

    Article  CAS  PubMed  Google Scholar 

  53. Gillum, A.M., Tsay, E.Y. and Kirsch, D.R. (1984) Isolation of the Candida albicans gene for orotidine-5’-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol. Gen. Genet. 198, 179.

    Article  CAS  PubMed  Google Scholar 

  54. Freshney, R.I. (1993) Culture of animal cells. In: A Manual of Basic Techniques, 3rd ed. New York: Wiley-Liss.

    Google Scholar 

  55. Phelan, M.C. (2003) Basic techniques for mammalian cell tissue culture. In: Bonifacio J.S., Dasso M., Harford J.B., Lippincott-Scwartz J., Yamada K.M., eds. Current Protocols in Cell Biology, Hoboken, NJ: John Wiley & Sons. Chapter 1, Unit 1.1, Page 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hernandez, R., Rupp, S. (2009). Human Epithelial Model Systems for the Study of Candida infections In Vitro: Part II. Histologic Methods for Studying Fungal Invasion. In: Rupp, S., Sohn, K. (eds) Host-Pathogen Interactions. Methods in Molecular Biology, vol 470. Humana Press. https://doi.org/10.1007/978-1-59745-204-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-204-5_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-886-7

  • Online ISBN: 978-1-59745-204-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics