Skip to main content

Functional Studies of Regulatory Genes in the Sea Urchin Embryo

  • Protocol
  • First Online:
Book cover Microinjection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 518))

Abstract

Sea urchin embryos are characterized by an extremely simple mode of development, rapid cleavage, high transparency, and well-defined cell lineage. Although they are not suitable for genetic studies, other approaches are successfully used to unravel mechanisms and molecules involved in cell fate specification and morphogenesis. Microinjection is the elective method to study gene function in sea urchin embryos. It is used to deliver precise amounts of DNA, RNA, oligonucleotides, peptides, or antibodies into the eggs or even into blastomeres. Here we describe microinjection as it is currently applied in our laboratory and show how it has been used in gene perturbation analyses and dissection of cis-regulatory DNA elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angerer L. M., Oleksyn D. W., Levine A. M., Li X., Klein W. H., Angerer R. C. (2001) Sea urchin goosecoid function links fate specification along the animal–vegetal and oral–aboral embryonic axes. Development, 128, 4393–4404.

    CAS  Google Scholar 

  2. Mao C. A., Wikramanayake A. H., Gan L., Chuang C. K., Summers R. G., Klein W. H. (1996) Altering cell fates in sea urchin embryos by overexpressing SpOtx, an orthodenticle-related protein. Development, 122, 1489–1498.

    CAS  Google Scholar 

  3. Levine M., Davidson E. H. (2005) Gene regulatory networks for development. Proc. Natl. Acad. Sci. USA, 102 (14), 4936–4942.

    Google Scholar 

  4. Oliveri P., Davidson E. H. (2004) Gene regulatory network controlling embryonic specification in the sea urchin. Curr. Opin. in Gen. & Dev., 14, 351–360.

    Article  CAS  Google Scholar 

  5. Davidson E. H., Rast J. P., Oliveri P., Ransick A., Calestani C., Yuh C. H., Minokawa T., Amore G., Hinman V., Arenas-Mena C., Otim O., Brown C. T., Livi C. B., Lee P. Y., Revilla R., Rust A. G., Pan Z., Schilstra M. J., Clarke P. J., Arnone M. I., Rowen L., Cameron R. A., McClay D. R., Hood L., Bolouri H. (2002) A genomic regulatory network for development. Science, 295 (5560), 1669–1678.

    Article  CAS  Google Scholar 

  6. Illies M. R., Peeler M. T., Dechtiaruk A. M., Ettensohn C. A. (2002) Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus. Dev. Genes. Evol., 212, 419–431.

    Article  CAS  Google Scholar 

  7. Di Bernardo M., Russo R., Oliveri P., Melfi R., Spinelli G. (1995) Homeobox-containing gene transiently expressed in a spatially restricted pattern in the early sea urchin. Proc. Natl. Acad. Sci. USA, 92 (18), 8180–8184.

    Google Scholar 

  8. Oliveri P., Carrick D. M., Davidson E. H. (2002) A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev. Biol., 246, 209–228.

    Article  CAS  Google Scholar 

  9. Röttinger E., Besnardeau L., Lepage T. (2006) Expression pattern of three putative RNA-binding proteins during early development of the sea urchin Paracentrotus lividus. Gene Expr. Patterns, 6, 864–872.

    Article  Google Scholar 

  10. Cavalieri V., Di Bernardo M., Spinelli G. (2007) Regulatory sequences driving expression of the sea urchin Otp homeobox gene in oral ectoderm cells. Gene Expr. Patterns, 7 (1-2), 124–130.

    Article  CAS  Google Scholar 

  11. Amore G., Davidson E. H. (2006) cis-Regulatory control of cyclophilin, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo. Dev. Biol., 293, 555–564.

    Article  CAS  Google Scholar 

  12. Ransick A., Davidson E. H. (2006) cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification. Dev. Biol., 297 (2), 587–602.

    Article  CAS  Google Scholar 

  13. Minokawa T., Wikramanayake A. H., Davidson E. H. (2005) cis-Regulatory inputs of the wnt8 gene in the sea urchin endomesoderm network. Dev. Biol., 288, 545–558.

    Article  CAS  Google Scholar 

  14. Revilla-i-Domingo R., Minokawa T., Davidson E. H. (2004) R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres. Dev. Biol., 274, 438–451.

    Article  CAS  Google Scholar 

  15. Cavalieri V., Spinelli G., Di Bernardo M. (2003) Impairing Otp homeodomain function in oral ectoderm cells affects skeletogenesis in sea urchin embryos. Dev. Biol., 262 (1), 107–118.

    Article  CAS  Google Scholar 

  16. Di Bernardo M., Castagnetti S., Bellomonte D., Oliveri P., Melfi R., Palla F., Spinelli G. (1999) Spatially restricted expression of PlOtp, a Paracentrotus lividus orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and skeletal morphogenesis in late cleavage sea urchin embryos. Development, 126, 2171–2179.

    Google Scholar 

  17. Di Caro D., Melfi R., Alessandro C., Serio G., Di Caro V., Cavalieri V., Palla F., Spinelli G. (2004) Down-regulation of early sea urchin histone H2A gene relies on cis-regulative sequences located in the 5′ and 3′ regions and including the enhancer blocker sns. J. Mol. Biol., 342, 1367–1377.

    Article  Google Scholar 

  18. Croce J., Lhomond G., Gache C. (2003) Coquillette, a sea urchin T-box gene of the Tbx2 subfamily, is expressed asymmetrically along the oral–aboral axis of the embryo and is involved in skeletogenesis. Mech. Dev., 120, 561–572.

    Article  CAS  Google Scholar 

  19. Ettensohn C. A., Illies M. R., Oliveri P., De Jong D. L. (2003) Alx1, a member of the Cart1/Alx3/Alx4 subfamily of paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo. Development, 130, 2917–2928.

    Article  CAS  Google Scholar 

  20. Puchi M., Quiñones K., Concha C., Iribarren C., Bustos P., Morin V., Genevière A. M., Imschenetzky M. (2006) Microinjection of an antibody against the cysteine-protease involved in male chromatin remodeling blocks the development of sea urchin embryos at the initial cell cycle. J. Cell. Bioch., 98, 335–342.

    Article  CAS  Google Scholar 

  21. Salaun P., Boulben S., Mulner-Lorillon O., Belle R., Sonenberg N., Morales J., Cormier P. (2005) Embryonic-stage-dependent changes in the level of eIF4E-binding proteins during early development of sea urchin embryos. J. Cell. Sci., 118, 1385–1394.

    Article  Google Scholar 

  22. FitzHarris G., Larman M., Richards C., Carroll J. (2005) An increase in [Ca2+]i is sufficient but not necessary for driving mitosis in early mouse embryos. J. Cell. Sci., 118, 4563–4575.

    Article  CAS  Google Scholar 

  23. Peterson R. E., McClay D. R. (2005) A fringe-modified notch signal affects specification of mesoderm and endoderm in the sea urchin embryo. Dev. Biol., 282, 126–137.

    Article  CAS  Google Scholar 

  24. Duboc V., Röttinger E., Besnardeau L., Lepage T. (2004) Nodal and BMP2/4 signaling organizes the oral–aboral axis of the sea urchin embryo. Dev. Cell., 6, 397–410.

    Article  CAS  Google Scholar 

  25. Kenny A. P., Oleksyn D. W., Newman L. A., Angerer R. C., Angerer L. M. (2003) Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos. Dev. Biol., 261, 412–425.

    Article  CAS  Google Scholar 

  26. Amore G., Yavrouian R. G., Peterson K. J., Ransick A., McClay D. R., Davidson E. H. (2003) Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks. Dev. Biol., 261, 55–81.

    Article  CAS  Google Scholar 

  27. Coffman J. A., Davidson E. H. (2001) Oral-aboral axis specification in the sea urchin embryo. Dev. Biol., 230, 18–28.

    Article  CAS  Google Scholar 

  28. Röttinger E., Besnardeau L., Lepage T. (2004) A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets. Development, 131, 1075–1087.

    Article  Google Scholar 

  29. Gross J. M., McClay D. R. (2001) The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus. Dev. Biol., 239, 132–147.

    Article  CAS  Google Scholar 

  30. Rupp R. A. W., Snider L., Weintraub H. (1994) Xenopus embryos regulate the nuclear localization of XMyoD. Gene Dev., 8, 1311–1323.

    Article  CAS  Google Scholar 

  31. Turner D. L., Weintraub H. (1994) Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Gene Dev., 8, 1434–1447.

    Article  CAS  Google Scholar 

  32. Range R. C., Venuti J. M., McClay D. R. (2005) LvGroucho and nuclear β-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo. Dev. Biol., 279, 252–267.

    Article  CAS  Google Scholar 

  33. Tan H., Ransick A., Wu H., Dobias S., Liu Y. H., Maxson R. (1998) Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos. Dev. Biol., 201, 230–246.

    Article  CAS  Google Scholar 

  34. Wikramanayake A. H., Huang L., Klein W. H. (1998) β-Catenin is essential for patterning the maternally specified animal–vegetal axis in the sea urchin embryo. Proc. Natl. Acad. Sci. USA, 95, 9343–9348.

    Google Scholar 

  35. Robertson A. J., Dickey-Sims C., Ransick A., Rupp D. E., McCarthy J. J., Coffman J. A. (2006) CBFβ is a facultative Runx partner in the sea urchin embryo. BMC Biol., 4, 4.

    Article  Google Scholar 

  36. Angerer L. M., Newman L. A., Angerer R. C. (2005) SoxB1 downregulation in vegetal lineages of sea urchin embryos is achieved by both transcriptional repression and selective protein turnover. Development, 132, 999–1008.

    Article  CAS  Google Scholar 

  37. Burke R. D., Murray G., Rise M., Wang D. (2004) Integrins on eggs: the βC subunit is essential for formation of the cortical actin cytoskeleton in sea urchin eggs. Dev. Biol., 265, 53–60.

    Article  CAS  Google Scholar 

  38. Livant D. L., Hough-Evans B. R., Moore J. G., Britten R. J., Davidson E. H. (1991) Differential stability of expression of similarly specified endogenous and exogenous genes in the sea urchin embryo. Development, 113, 385–398.

    CAS  Google Scholar 

  39. McMahon A. P., Flytzanis C. N., Hough-Evans B. R., Katula K. S., Britten R. J., Davidson E. H. (1985) Introduction of cloned DNA into sea urchin egg cytoplasm: replication and persistence during embryogenesis. Dev. Biol., 108, 420–430.

    Article  CAS  Google Scholar 

  40. Ghiglione C., Emily-Fenouil F., Lhomond G., Gache C. (1997) Organization of the proximal promoter of the hatching-enzyme gene, the earliest zygotic gene expressed in the sea urchin embryo. Eur. J. Biochem., 250 (2), 502–513.

    Article  CAS  Google Scholar 

  41. Arnone M. I., Bogarad L. D., Collazo A., Kirchhamer C. V., Cameron R. A., Rast J. P., Gregorians A., Davidson E. H. (1997) Green fluorescent protein in the sea urchin: new experimental approaches to transcriptional regulatory analysis in embryos and larvae. Development, 124, 4649–4659.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cavalieri, V., Bernardo, M.D., Spinelli, G. (2009). Functional Studies of Regulatory Genes in the Sea Urchin Embryo. In: Carroll, D. (eds) Microinjection. Methods in Molecular Biology, vol 518. Humana Press. https://doi.org/10.1007/978-1-59745-202-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-202-1_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-884-3

  • Online ISBN: 978-1-59745-202-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics