Skip to main content

Expression of Exogenous mRNA in Xenopus laevis Embryos for the Study of Cell Cycle Regulation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 518))

Abstract

The microinjection of mRNA that is transcribed and capped in vitro into fertilized eggs and embryos of Xenopus laevis provides a powerful means for discovering the function of proteins during early development. Proteins may be overexpressed for a gain-of-function effect or exogenous protein function may be compromised by the microinjection of mRNA encoding “dominant-negative” proteins. This methodology is particularly suited for the investigation of the regulation of the cell cycle, checkpoints, and apoptosis in early development.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kinoshita-Kawada M., Oberdick J., and Xi Zhu M. (2004) A Purkinje cell specific GoLoco domain protein, L7/Pcp-2, modulates receptor-mediated inhibition of Cav2.1 Ca2+ channels in a dose-dependent manner. Brain Res. 132, 73–86.

    Article  CAS  Google Scholar 

  2. Brandt S. and Fisahn J. (1998) Identification of a K+ channel from potato leaves by functional expression in Xenopus oocytes. Plant & Cell Physiol. 39, 600–6.

    CAS  Google Scholar 

  3. Morales M.M., Carroll T.P., Morita T., Schwiebert, E.M., Devuyst O, Wilson P.D., Lopes A G., Stanton B.A., Dietz H.C., Cutting G.R., and Guggino W.B. (1996) Both the wild type and a functional isoform of CFTR are expressed in kidney. Am. J. Physiol. 270, F1038–48.

    CAS  Google Scholar 

  4. Carter A., and Sible J. (2003) Loss of XChk1 function leads to apoptosis after the midblastula transition in Xenopus laevis embryos. Mech. Devel. 120, 315–23.

    Article  CAS  Google Scholar 

  5. Wroble B., Sible J. (2005) Chk2/Cds1 protein kinase blocks apoptosis during early development of Xenopus laevis. Dev. Dyn. 233, 1359–65.

    Article  CAS  Google Scholar 

  6. Murray A.W., and Kirschner M.W. (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–80.

    Article  CAS  Google Scholar 

  7. Newport J. and Kirschner M. (1982) A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–86.

    Article  CAS  Google Scholar 

  8. Newport J. and Kirschner M. (1982) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30, 687–96.

    Article  CAS  Google Scholar 

  9. Howe J.A., Howell M., Hunt T., Newport J.W. (1995) Identification of a developmental timer regulating the stability of embryonic cyclin A and a new somatic A-type cyclin at gastrulation. Genes Dev. 9, 1164–76.

    Article  CAS  Google Scholar 

  10. Howe J.A., and Newport J.W. (1996) A developmental timer regulates degradation of cyclin E1 at the midblastula transition during Xenopus embryogenesis. Proc. Natl. Acad. Sci. USA 93, 2060–4.

    Google Scholar 

  11. Leise W.F., III and Mueller P.R. (2002) Multiple Cdk1 inhibitory kinases regulate the cell cycle during development. Dev. Biol. 249, 156–73.

    Article  CAS  Google Scholar 

  12. Anderson J.A., Lewellyn A.L., and Maller J.L. (1997) Ionizing radiation induces apoptosis and elevates cyclin A1-Cdk2 activity prior to but not after the midblastula transition in Xenopus. Mol. Biol. Cell 8, 1195–206.

    CAS  Google Scholar 

  13. Sible J.C., Anderson J.A., Lewellyn A.L., and Maller J.L. (1997) Zygotic transcription is required to block a maternal program of apoptosis in Xenopus embryos. Dev. Biol. 189, 335–46.

    Article  CAS  Google Scholar 

  14. Hensey C., and Gautier J. (1997) A developmental timer that regulates apoptosis at the onset of gastrulation. Mech. Devel. 69, 183–95.

    Article  CAS  Google Scholar 

  15. Frederick D.L., Andrews M.T. (1994) Cell cycle remodeling requires cell–cell interactions in developing Xenopus embryos. J. Exp. Zool. 270, 410–6.

    Article  CAS  Google Scholar 

  16. Kroll K.L., Amaya E. (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–83.

    CAS  Google Scholar 

  17. Offield M.F., Hirsch N., and Grainger R.M. (2000) The development of Xenopus tropicalis transgenic lines and their use in studying lens developmental timing in living embryos. Development 127, 1789–97.

    CAS  Google Scholar 

  18. Heasman J. (2002) Morpholino oligos: making sense of antisense? Dev. Biol. 243, 209–14.

    Article  CAS  Google Scholar 

  19. Moody S.A. (2000) Cell lineage analysis in Xenopus embryos. Methods Mol. Biol. 135, 331–47.

    CAS  Google Scholar 

  20. Hartley R.S., Sible J.C., Lewellyn A.L., and Maller J.L. (1997) A role for cyclin E/Cdk2 in the timing of the midblastula transition in Xenopus embryos. Dev. Biol. 188, 312–21.

    Article  CAS  Google Scholar 

  21. Hartley R.S., Rempel R.E., and Maller J.L. (1996) In vivo regulation of the early embryonic cell cycles in Xenopus. Dev. Biol. 173, 408–19.

    Article  CAS  Google Scholar 

  22. Kim S., Li C., and Maller J. (1999) A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis. Dev. Biol. 212, 381–91.

    Article  CAS  Google Scholar 

  23. Murakami M.S., and Woude G.F.V. (1998) Analysis of the early embryonic cell cycles of Xenopus; regulation of cell cycle length by Xe-wee1 and Mos. Development 125, 237–48.

    CAS  Google Scholar 

  24. Kappas N.C., Savage P., Chen K.C., Walls A.T., Sible J.C. (2000) Dissection of the XChk1 signaling pathway in Xenopus laevis embryos. Mol. Biol. Cell 11(9), 3101–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sible, J.C., Wroble, B.N. (2009). Expression of Exogenous mRNA in Xenopus laevis Embryos for the Study of Cell Cycle Regulation. In: Carroll, D. (eds) Microinjection. Methods in Molecular Biology, vol 518. Humana Press. https://doi.org/10.1007/978-1-59745-202-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-202-1_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-884-3

  • Online ISBN: 978-1-59745-202-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics