Skip to main content

Background-Free Protein Detection in Polyacrylamide Gels and on Electroblots Using Transition Metal Chelate Stains

  • Protocol
The Protein Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 344 Accesses

Abstract

Electrophoretically separated proteins may be visualized using organic dyes such as Ponceau Red, Amido Black, Fast Green, or most commonly Coomassie Brilliant Blue (1,2). Alternatively, sensitive detection methods have been devi sed using metal ions and colloids of gold, silver, copper, carbon, or iron (3–12). Metal chelates form a third class of stains, consisting of transition metal complexes that bind avidly to proteins resolved in polyacrylamide gels or immobilized on solid-phase membrane supports (13–27). In recent years, metal chelate stains have been designed and optimized specifically for compatibility with commonly used microchemical characterization procedures employed in proteomics. The metal chelate stains are simple to implement, and do not contain extraneous chemicals such as glutaraldehyde, formaldehyde, or Tween-20 that are well known to interfere with many downstream protein characterization procedures.

Metal chelates can be used to detect proteins on nitrocellulose, poly(vinylidene difluoride) (PVDF), and nylon membranes as well as in polyacrylamide and agarose gels. The metal complexes do not modify proteins, and are compatible with immunoblotting, lectin blotting, mass spec-trometry, and Edman-based protein sequencing (13–17,22–27). Metal chelate stains are suitable for routine protein measurement in solid-phase assays owing to the quantitative stoichiometry of complex formation with proteins and peptides (15,16). Such solid phase protein assays are more sensitive and resistant to chemical interference than their solution-based counterparts (15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Merril, C. (1987) Detection of proteins separated by electrophoresis, in Advances in Electrophoresis, Vol. 1 (Chrambach, A., Dunn, M., and Radola B., eds.), VCH Press, Germany/Switzerland/Great Britian/New York, pp. 111–139.

    Google Scholar 

  2. Wirth, P. and Romano, A. (1995) Staining methods in gel electrophoresis, including the use of multiple detection methods. J. Chromatogr. A, 698, 123–143.

    Article  CAS  PubMed  Google Scholar 

  3. Hancock, K. and Tsang, V. (1983) India ink staining of proteins on nitrocellulose paper. Analyt. Biochem. 133, 157–162.

    Article  CAS  PubMed  Google Scholar 

  4. Moeremans, M., Daneels, G., and De Mey, J. (1985) Sensitive colloidal metal (gold or silver) staining of protein blots on nitrocellulose membranes. Analyt. Biochem. 145, 315–321.

    Article  CAS  PubMed  Google Scholar 

  5. Moeremans, M., Raeymaeker, M., Daneels, G., and De Mey, J. (1986) Ferridye: colloidal iron binding followed by Perls’ reaction for the staining of proteins transferred from sodium dodecyl sulfate gels to nitrocellulose and positively charged nylon membranes. Analyt. Biochem. 153, 18–22.

    Article  CAS  PubMed  Google Scholar 

  6. Hunter, J. and Hunter, S. (1987) Quantification of proteins in the low nanogram range by staining with the colloidal gold stain Aurodye. Analyt. Biochem. 164, 430–433.

    Article  CAS  PubMed  Google Scholar 

  7. Egger, D. and Bienz, K. (1987) Colloidal gold and immunoprobing of proteins on the same nitrocellulose blot. Analyt. Biochem. 166, 413–417.

    Article  CAS  PubMed  Google Scholar 

  8. Yamaguchi, K. and Asakawa, H. (1988) Preparation of colloidal gold for staining proteins electrotransferred onto nitrocellulose membranes. Analyt. Biochem. 172, 104–107.

    Article  CAS  PubMed  Google Scholar 

  9. Li, K., Geraerts, W., van Elk, R., and Joosse, J. (1988) Fixation increases sensitivity of india ink staining of proteins and peptides on nitrocellulose paper. Analyt. Biochem. 174, 97–100.

    Article  CAS  PubMed  Google Scholar 

  10. Li, K., Geraerts, R., van Elk, R., and Joosse, J. (1989) Quantification of proteins in the subnanogram and nanogram range: comparison of the Aurodye, Ferridye, and India Ink staining methods. Analyt. Biochem. 182, 44–47.

    Article  CAS  PubMed  Google Scholar 

  11. Root, D. and Reisler, E. (1989) Copper iodide staining of protein blots on nitrocellulose membranes. Analyt. Biochem. 181, 250–253.

    Article  CAS  PubMed  Google Scholar 

  12. Root, D. and Wang, K. (1993) Silver-enhanced copper staining of protein blots. Analyt. Biochem. 209, 15–19.

    Article  CAS  PubMed  Google Scholar 

  13. Patton, W., Lam, L., Su, Q., Lui, M., Erdjument-Bromage, H., and Tempst, P. (1994). Metal chelates as reversible stains for detection of electroblotted proteins: application to protein microsequencing and immunoblotting. Analyt. Biochem. 220, 324–335.

    Article  CAS  PubMed  Google Scholar 

  14. Shojaee, N., Patton, W., Lim, M., and Shepro, D. (1996) Pyrogallol red-molybdate; a reversible, metal chelate stain for detection of proteins immobilized on membrane supports. Electrophoresis 17, 687–695.

    Article  CAS  PubMed  Google Scholar 

  15. Lim, M., Patton, W., Shojaee, N., and Shepro, D. (1996) A solid-phase metal chelate assay for quantifying total protein; resistance to chemical interference. Biotechniques 21, 888–897.

    CAS  PubMed  Google Scholar 

  16. Lim, M., Patton, W., Shojaee, N., and Shepro, D. (1997) Comparison of a sensitive, solidphase metal chelate protein assay with the bicinchoninic acid (BCA) assay. Am. Biotech. Lab. 15, 16–18.

    CAS  Google Scholar 

  17. Lim, M., Patton, W., Shojaee, N., Lopez, M., Spofford, K., and Shepro, D. (1997) A luminescent europium complex for the sensitive detection of proteins and nucleic acids immobilized on membrane supports. Analyt. Biochem. 245, 184–195.

    Article  CAS  PubMed  Google Scholar 

  18. Chung, M. (1985) A specific iron stain for iron-binding proteins in polyacrylamide gels: application to transferrin and lactoferrin. Analyt. Biochem. 148, 498–502.

    Article  CAS  PubMed  Google Scholar 

  19. Bickar, D. and Reid, P. (1992) A high-affinity protein stain for Western blots, tissue prints, and electrophoresis gels. Analyt. Biochem. 203, 109–115.

    Article  CAS  PubMed  Google Scholar 

  20. Graham, G., Nairn, R., and Bates, G. (1978) Polyacrylamide gel staining with iron (II)-bathophenanthroline sulfonate. Analyt. Biochem. 88, 434–441.

    Article  CAS  PubMed  Google Scholar 

  21. Zapolski, E., Gersten, D., and Ledley, R. (1982) [59Fe] ferrous bathophenathroline sulfonate: a radioactive stain for labeling proteins in situ in polyacrylamide gels. Analyt. Biochem. 123, 325–328.

    Article  CAS  PubMed  Google Scholar 

  22. Berggren, K., Steinberg, T., Lauber, W., Carroll, J., Lopez, M., Chernokalskaya, E., et al. (1999) A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Analyt. Biochem. 276, 129–143.

    Article  CAS  PubMed  Google Scholar 

  23. Steinberg, T., Lauber, W., Berggren, K. Kemper, C., Yue, S., and Patton, W. (200) Fluorescence detection of proteins in SDS-polyacrylamide Gels using environmentally benign, non-fixatiye, saline solution. Electrophoresis 21, 497–508.

    Google Scholar 

  24. Steinberg, T., Chernokalskaya, E., Berggren, K., Lopez, M., Diwu, Z., Haugland, R., and Patton, W. (2000) Ultrasensitive fluorescence protein detection in isoelectric focusing gels using a ruthenium metal chelate stain. Electrophoresis 21, 486–496.

    Article  CAS  PubMed  Google Scholar 

  25. Patton, W. (2000) A thousand points of light; the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electro-phoresis 21, 1123–1144.

    Article  CAS  Google Scholar 

  26. Patton, W. (2000) Making blind robots see; the synergy between fluorescent dyes and imaging devices in automated proteomics. BioTechniques 28, 944–957.

    CAS  PubMed  Google Scholar 

  27. Berggren, K., Chernokalskaya, E., Steinberg, T., Kemper, C., Lopez, M., Diwu, Z., et al. (2000) Background-free, high-sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 21, 2509–2521.

    Article  CAS  PubMed  Google Scholar 

  28. Gosling, J. (1990) A decade of development in immunoassay methodology. Clin. Chem. 36, 1408–1427.

    CAS  PubMed  Google Scholar 

  29. Harlow, E. and Lane, D. (1988) Antibodies; A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 505.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Patton, W.F. (2009). Background-Free Protein Detection in Polyacrylamide Gels and on Electroblots Using Transition Metal Chelate Stains. In: Walker, J.M. (eds) The Protein Protocols Handbook. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-198-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-198-7_49

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-474-6

  • Online ISBN: 978-1-59745-198-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics