Skip to main content

Plant Protein Sample Preparation for 2-DE

  • Protocol
The Protein Protocols Handbook

Abstract

Most plant tissues are not a ready source for protein extraction and need specific precautions. The cell wall and the vacuole make up the majority of the cell mass, with the cytosol representing only 1 to 2 % of the total cell volume. Subsequently, plant tissues have a relatively low protein content compared to bacterial or animal tissues. The cell wall and the vacuole are associated with numerous substances responsible for irreproducible results such as proteolytic breakdown, streaking and charge heterogeneity. Most common interfering substances are phenolic compounds, proteolytic and oxidative enzymes, terpenes, pigments, organic acids, inhibitory ions, and carbohydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Wuyts, N., De Waele, D., and Swennen, R. (2006) Extraction and partial characterization of polyphenol oxidase from banana (Musa acuminata Grande naine) roots. Plant Physiol. Biochem. 44, 308–314.

    Article  CAS  PubMed  Google Scholar 

  2. Wuyts, N., De Waele, D., and Swennen, R. (2006) Activity of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase in roots of banana (Musa acuminata AAA, cvs Grande Naine and Yangambi km5) before and after infection with Radopholus similis. Nematology 8, 201–209.

    Article  CAS  Google Scholar 

  3. Gooding, P. S., Bird, C., and Robinson, S. P. (2001) Molecular cloning and characterization of banana fruit polyphenol oxidase. Planta 213, 748–757.

    Article  CAS  PubMed  Google Scholar 

  4. Simmonds, N. W. (1966) Bananas. Longmans, London.

    Google Scholar 

  5. Loomis, W. D. and Bataille, J. (1966) Plant phenolic compounds and the isolation of plant enzymes. Phytochemistry 5, 423–438.

    Article  CAS  Google Scholar 

  6. Damerval, C., Zivy, M., Granier, F., and de Vienne, D. (1988) Two-dimensional electrophoresis in plant biology. in Advances in electrophoresis (Chrambach, A., Dunn, M. J., & Radola, B.J., eds.) New York, VCH, pp. 265–280.

    Google Scholar 

  7. Granier, F. (1988) Extraction of plant-proteins for two-dimensional electrophoresis. Electrophoresis 9, 712–718.

    Article  CAS  PubMed  Google Scholar 

  8. Meyer, Y., Grosset, J., Chartier, Y., and Cleyetmarel, J. C. (1988) Preparation by two-dimensional electrophoresis of proteins for antibody-production - antibodies against proteins whose synthesis is reduced by auxin in tobacco mesophyll protoplasts. Electrophoresis 9, 704–712.

    Article  CAS  PubMed  Google Scholar 

  9. O’Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.

    PubMed Central  PubMed  Google Scholar 

  10. Cremer, F. and Vandewalle, C. (1985) Method for extraction of proteins from green plant-tissues for two-dimensional polyacrylamide-gel electrophoresis. Anal. Bio-chem. 147, 22–26.

    CAS  Google Scholar 

  11. Wu, F. S. and Wang, M. Y. (1984) Extraction of proteins for sodium dodecyl-sulfate polyacrylamide-gel electrophoresis from protease-rich plant-tissues. Anal. Bio-chem. 139, 100–103.

    CAS  Google Scholar 

  12. Wessel, D. and Flugge, U. I. (1984) A method for the quantitative recovery of protein in dilute-solution in the presence of detergents and lipids. Anal. Biochem. 138, 141–143.

    Article  CAS  PubMed  Google Scholar 

  13. Hari, V. (1981) A method for the two-dimensional electrophoresis of leaf proteins. Anal. Biochem. 113, 332–335.

    Article  CAS  PubMed  Google Scholar 

  14. Flengsrud, R. and Kobro, G. (1989) A method for two-dimensional electrophoresis of proteins from green plant-tissues. Anal. Biochem. 177, 33–36.

    Article  CAS  PubMed  Google Scholar 

  15. Damerval, C., Devienne, D., Zivy, M., and Thiellement, H. (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic-variation detected in Wheat-seedling proteins. Electrophoresis 7, 52–54.

    Article  CAS  Google Scholar 

  16. Van Etten, J. L., Freer, S. N., and Mccune, B. K. (1979) Presence of a major (storage?) protein in dormant spores of the fungus Botryodiplodia theobromae. J. Bacteriol. 139, 650–652.

    Google Scholar 

  17. Englard, S. and Seifter, S. (1990) Precipitation techniques. Methods Enzymol. 182, 285–300.

    Article  CAS  PubMed  Google Scholar 

  18. Wu, F. S. and Wang, M. Y. (1984) Extraction of proteins for sodium dodecyl-sulfate polyacrylamide-gel electrophoresis from protease-rich plant-tissues. Anal. Bio-chem. 139, 100–103.

    CAS  Google Scholar 

  19. Nandakumar, M. P., Shen, J., Raman, B., and Marten, M. R. (2003) Solubilization of trichloroacetic acid (TCA) precipitated microbial proteins via NaOH for two-dimensional electrophoresis. J. Proteome Res.. 2, 89–93.

    Article  CAS  PubMed  Google Scholar 

  20. Unlu, M., Morgan, M. E., and Minden, J. S. (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077.

    Article  CAS  PubMed  Google Scholar 

  21. Carpentier, S. C., Witters, E., Laukens, K., Deckers, P., Swennen, R., and Panis, B. (2005) Preparation of protein extracts from recalcitrant plant tissues: An evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5, 2497–2507.

    Article  CAS  PubMed  Google Scholar 

  22. Carpentier, S. C., Dens, K., Van den houwe, I., Swennen, R., and Panis, B. (2007) Lyophilization, a practical way to store and transport tissues prior to protein extraction for 2-DE analysis? Proteomics Supl S, 64–69.

    Google Scholar 

  23. Pedreschi, R., Vanstreels, E., Carpentier, S., Hertog, M., Lammertyn, J., Robben, J. et al. (2007) Proteomic analysis of core breakdown disorder in Conference pears (Pyrus communis L.). Proteomics 7, 2083–2099.

    Article  CAS  PubMed  Google Scholar 

  24. Carpentier, S. C., Witters, E., Laukens, K., Van Onckelen, H., Swennen, R., and Panis, B. (2007) Banana (Musa spp.) as amodel to study the meristem proteome: acclimation to osmotic stress. Proteomics 7, 92–105.

    Article  CAS  PubMed  Google Scholar 

  25. Van Etten, J. L., Freer, S. N., and McCune, B. K. (1979) Presence of a major (storage?) protein in dormant spores of the fungus Botryodiplodia theobromae. J. Bac-teriol. 139, 650–652.

    Google Scholar 

  26. Schuster, A. M. and Davies, E. (1983) Ribonucleic-acid and protein-metabolism in Pea epicotyls.1. The aging process. Plant Physiol. 73, 809–816.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Usuda, H. and Shimogawara, K. (1995) Phosphate deficiency in maize: changes in the 2-dimensional electrophoretic patterns of soluble-proteins from 2nd-leaf blades associated with induced senescence. Plant Cell Physiol. 36, 1149–1155.

    CAS  Google Scholar 

Download references

Acknowledgment

Dr. S.C. Carpentier is supported by a postdoctoral fellowship of the K.U.Leuven.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Carpentier, S.C., Swennen, R., Panis, B. (2009). Plant Protein Sample Preparation for 2-DE. In: Walker, J.M. (eds) The Protein Protocols Handbook. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-198-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-198-7_13

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-474-6

  • Online ISBN: 978-1-59745-198-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics