Skip to main content

Overview of Drug Delivery and Alternative Methods to Electroporation

  • Protocol
Book cover Electroporation Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 423))

Abstract

This chapter provides an overview of the application of electroporation to areas other than gene delivery. These areas include the delivery of drugs and vaccines to tissues and tumors as well as into and through the skin. Achievements and limitations of electroporation in these areas are presented. Alternative physical methods for gene and drug delivery besides electroporation are described. The advantages and drawbacks of electroporation, compared with these methods, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Beebe, S.J., White, J., Blackmore, P.F., Deng, Y., Somers, K., and Schoenbach, K.H. (2003) Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol. 22, 785–796.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Okino, M. and Mohri, H. (1987) Effects of a high-voltage electrical impulse and an anticancer drug on in vivo growing tumors. Jpn. J.Cancer Res. 78, 1319–1321.

    CAS  PubMed  Google Scholar 

  3. 3. Mir, L.M. and Orlowski, S. (1999) Mechanisms of electrochemotherapy. Adv. Drug Deliv. Rev. 35, 107–118.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Heller, R., Gilbert, R., and Jaroszeski, M.J. (1999) Clinical applications of electrochemotherapy. Adv. Drug Deliv. Rev. 35, 119–129.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Lebar, A.M., Sersa, G., Kranjc, S., Groselj, A., and Miklavcic, D. (2002) Optimisation of pulse parameters in vitro for in vivo electrochemotherapy. Anticancer Res. 22, 1731–1736.

    PubMed  Google Scholar 

  6. 6. Gothelf, A., Mir, L.M., and Gehl, J. (2003). Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation. Cancer Treat. Rev. 29, 371–387.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Kuriyama, S., Matsumoto, M., Mitoro, A., et al. (2000) Electrochemotherapy for colorectal cancer with commonly used chemotherapeutic agents in a mouse model. Dig. Dis. Sci. 45, 1568–1577.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Rabussay, D.P., Nanda, G.S., and Goldfarb, P.M. (2002) Enhancing the effectiveness of drug-based cancer therapy by electroporation (electropermeabilization). Technol. Cancer Res. Treat. 1, 71–82.

    CAS  PubMed  Google Scholar 

  9. 9. Dev, N.B., Preminger, T.J., Hofmann, G.A., and Dev, S.B. (1998) Sustained local delivery of heparin to the rabbit arterial wall with an electroporation catheter. Cathet. Cardiovasc. Diagn. 45, 337–345.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Miklavcic, D., Beravs, K., Semrov, D., Cemazar, M., Demsar, F., and Sersa, G. (1998) The importance of electric field distribution for effective in vivo electroporation of tissues. Biophys. J. 74, 2152–2158.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Cullander, C. and Guy, R.H. (1991) Sites of iontophoretic current flow into the skin: identification and characterization with the vibrating probe electrode. J. Invest. Dermatol. 97, 55–64.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Pliquett, U., Gallo, S., Hui, S.W., Gusbeth, C., and Neumann, E. (2005) Local and transient structural changes in stratum corneum at high electric fields: contribution of Joule heating. Bioelectrochemistry. 67, 37–46.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Prausnitz, M.R., Bose, V.G., Langer, R. and Weaver, J.C. (1993) Electroporation of mammalian skin: a mechanism to enhance transdermal drug delivery. Proc. Natl. Acad. Sci. U.S.A. 90, 10504–10508.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Sen, A., Zhao, Y., Zhang, L., and Hui, S.W. (2002) Enhanced transdermal transport by electroporation using anionic lipids. J. Control. Release. 82, 399–405.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Murthy, S.N., Sen, A., Zhao, Y.L., and Hui, S.W. (2003) pH influences the postpulse permeability state of skin after electroporation. J. Control. Release. 93, 49–57.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Johnson, P.G., Hui, S.W., and Oseroff, A.R. (2002) Electrically enhanced percutaneous delivery of delta-aminolevulinic acid using electric pulses and a DC potential. Photochem. Photobiol. 75, 534–540.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Bommannan, D.B., Tamada, J., Leung, L., and Potts, R.O. (1994) Effect of electroporation on transdermal iontophoretic delivery of luteinizing hormone releasing hormone (LHRH) in vitro. Pharm. Res. 11, 1809–1814.

    Article  CAS  PubMed  Google Scholar 

  18. 18. Murthy, S.N., Zhao, Y., Hui, S.W., and Sen, A. (2006) Synergistic effect of anionic lipid enhancer and electroosmosis for transcutaneous delivery of insulin. Int. J. Pharm. 326(1/2), 1–6.

    CAS  Google Scholar 

  19. 19. Chen, T., Langer, R., and Weaver, J.C. (1998) Skin electroporation causes molecular transport across the stratum corneum through localized transport regions. J. Invest. Dermatol. Symp. Proc. 3, 159–165.

    CAS  Google Scholar 

  20. 20. Johnson, P.G., Gallo, S.A., Hui, S.W., and Oseroff, A.R. (1998) A pulsed electric field enhances cutaneous delivery of methylene blue in excised full-thickness porcine skin. J. Invest. Dermatol. 111, 457–463.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Denet, A.R., Vanbever, R., and Preat, V. (2004) Skin electroporation for transdermal and topical delivery. Adv. Drug. Deliv. Rev. 56, 659–674.

    Article  CAS  PubMed  Google Scholar 

  22. 22. Jadoul, A., Bouwstra, J., and Preat, V.V. (1999) Effects of iontophoresis and electroporation on the stratum corneum. Review of the biophysical studies. Adv. Drug Deliv. Rev. 35, 89–105.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Vanbever, R. and Preat, V.V. (1999) In vivo efficacy and safety of skin electroporation. Adv. Drug Deliv. Rev. 35, 77–88.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Vanbever, R., Lecouturier, N., and Preat, V. (1994) Transdermal delivery of metoprolol by electroporation. Pharm. Res. 11, 1657–1662.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Vanbever, R., Langers, G., Montmayeur, S., and Preat, V. (1998) Transdermal delivery of fentanyl: rapid onset of analgesia using skin electroporation. J. Control. Release. 50, 225–235.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Zhang, L., Lerner, S., Rustrum, W.V., and Hofmann, G.A. (1999) Electroporation-mediated topical delivery of vitamin C for cosmetic applications. Bioelectrochem. Bioenerg. 48, 453–461.

    Article  PubMed  Google Scholar 

  27. 27. Tamosiunas, M., Bagdonas, S., Didziapetriene, J., and Rotomskis, R. (2005) Electroporation of transplantable tumour for the enhanced accumulation of photosensitizers. J. Photochem. Photobiol. B. 81, 67–75.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Wong, T.W., Zhao, Y.L., Sen, A., and Hui, S.W. (2005) Pilot study of topical delivery of methotrexate by electroporation. Br. J. Dermatol. 152, 524–530.

    Article  CAS  PubMed  Google Scholar 

  29. 29. Wong, T.W., Chen, C.H., Huang, C.C., Lin, C.D., and Hui, S.W. (2006) Painless electroporation with a new needle-free microelectrode array to enhance transdermal drug delivery. J. Control. Release. 110, 557–565.

    Article  CAS  PubMed  Google Scholar 

  30. 30. Wang, S., Kara, M., and Krishnan, T.R. (1998) Transdermal delivery of cyclosporin-A using electroporation. J. Control. Release. 50, 61–70.

    Article  CAS  PubMed  Google Scholar 

  31. 31. Huang, J.F., Sung, K.C., Hu, O.Y., Wang, J.J., Lin, Y.H., and Fang, J.Y. (2005) The effects of electrically assisted methods on transdermal delivery of nalbuphine benzoate and sebacoyl dinalbuphine ester from solutions and hydrogels. Int. J. Pharm. 297, 162–171.

    CAS  PubMed  Google Scholar 

  32. 32. Murthy, S.N., Zhao, Y.L., Hui, S.W., and Sen, A. (2005) Electroporation and transcutaneous extraction (ETE) for pharmacokinetic studies of drugs. J. Control. Release. 105, 132–141.

    Article  CAS  PubMed  Google Scholar 

  33. 33. Murthy, S.N., Zhao, Y., Marlan, K., Hui, S.W., Kazim, L., and Sen, A. (2006) Lipid and electroosmosis enhanced transdermal delivery of insulin by electroporation. J. Pharm. Sci. 95, 2041–2050.

    Article  CAS  PubMed  Google Scholar 

  34. 34. Gallo, S.A., Sen, A., Hensen, M.L., and Hui, S.W. (1999) Time-dependent ultrastructural changes to porcine stratum corneum following an electric pulse. Biophys. J. 76, 2824–2832.

    Article  CAS  PubMed  Google Scholar 

  35. 35. Lombry, C., Dujardin, N., and Preat, V. (2000) Transdermal delivery of macromolecules using skin electroporation. Pharm. Res. 17, 32–37.

    Article  CAS  PubMed  Google Scholar 

  36. 36. Zewert, T.E., Pliquett, U.F., Vanbever, R., Langer, R., and Weaver, J.C. (1999) Creation of transdermal pathways for macromolecule transport by skin electroporation and a low toxicity, pathway-enlarging molecule. Bioelectrochem. Bioenerg. 49, 11–20.

    Article  CAS  PubMed  Google Scholar 

  37. 37. Weaver, J.C., Vanbever, R., Vaughan, T.E., and Prausnitz, M.R. (1997) Heparin alters transdermal transport associated with electroporation. Biochem. Biophys. Res. Commun. 234, 637–640.

    Article  CAS  PubMed  Google Scholar 

  38. 38. Vanbever, R., Prausnitz, M.R., and Preat, V. (1997) Macromolecules as novel transdermal transport enhancers for skin electroporation. Pharm. Res. 14, 638–644.

    Article  CAS  PubMed  Google Scholar 

  39. 39. Murthy, S.N., Sen, A., and Hui, S.W. (2004) Surfactant-enhanced transdermal delivery by electroporation. J. Control. Release. 98, 307–315.

    Article  CAS  PubMed  Google Scholar 

  40. 40. Sen, A., Zhao, Y.L., and Hui, S.W. (2002) Saturated anionic phospholipids enhance transdermal transport by electroporation. Biophys. J. 83, 2064–2073.

    Article  CAS  PubMed  Google Scholar 

  41. 41. Zewert, T.E., Pliquett, U.F., Langer, R., and Weaver, J.C. (1995) Transdermal transport of DNA antisense oligonucleotides by electroporation. Biochem. Biophys. Res. Commun. 212, 286–292.

    Article  CAS  PubMed  Google Scholar 

  42. 42. Medi, B.M. and Singh, J. (2003) Electronically facilitated transdermal delivery of human parathyroid hormone (1–34). Int. J. Pharm. 263, 25–33.

    Article  CAS  PubMed  Google Scholar 

  43. 43. Chang, S.L., Hofmann, G.A., Zhang, L., Deftos, L.J., and Banga, A.K. (2000) The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones. J. Control. Release. 66, 127–133.

    Article  CAS  PubMed  Google Scholar 

  44. 44. Sen, A., Daly, M.E., and Hui, S.W. (2002) Transdermal insulin delivery using lipid enhanced electroporation. Biochim. Biophys. Acta. 1564, 5–8.

    Article  CAS  PubMed  Google Scholar 

  45. 45. Klimuk, S.K., Najar, H.M., Semple, S.C., Aslanian, S., and Dutz, J.P. (2004) Epicutaneous application of CpG oligodeoxynucleotides with peptide or protein antigen promotes the generation of CTL. J. Invest. Dermatol. 122, 1042–1049.

    Article  CAS  PubMed  Google Scholar 

  46. 46. Guerena-Burgueno, F., Hall, E.R., Taylor, D.N., et al. (2002) Safety and immunogenicity of a prototype enterotoxigenic Escherichia coli vaccine administered transcutaneously. Infect. Immun. 70, 1874–1880.

    Article  CAS  PubMed  Google Scholar 

  47. 47. Misra, A., Ganga, S., and Upadhyay, P. (1999) Needle-free, non-adjuvanted skin immunization by electroporation-enhanced transdermal delivery of diphtheria toxoid and a candidate peptide vaccine against hepatitis B virus. Vaccine. 18, 517–523.

    Article  CAS  PubMed  Google Scholar 

  48. 48. Zhao, Y.L., Murthy, S.N., Manjili, M.H., Guan, L.J., Sen, A., and Hui, S.W. (2006) Induction of cytotoxic T-lymphocytes by electroporation-enhanced needle-free skin immunization. Vaccine. 24, 1282–1290.

    Article  CAS  PubMed  Google Scholar 

  49. 49. Babiuk, S., Baca-Estrada, M.E., Foldvari, M., et al. (2003) Needle-free topical electroporation improves gene expression from plasmids administered in porcine skin. Mol. Ther. 8, 992–998.

    Article  CAS  PubMed  Google Scholar 

  50. 50. Mikszta, J.A., Alarcon, J.B., Brittingham, J.M., Sutter, D.E., Pettis, R.J., and Harvey, N.G. (2002) Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 8, 415–419.

    Article  CAS  PubMed  Google Scholar 

  51. 51. Bramson, J., Dayball, K., Evelegh, C., Wan, Y.H., Page, D., and Smith, A. (2003) Enabling topical immunization via microporation: a novel method for pain-free and needle-free delivery of adenovirus-based vaccines. Gene Ther. 10, 251–260.

    Article  CAS  PubMed  Google Scholar 

  52. 52. Mitragotri, S. and Kost, J. (2004) Low-frequency sonophoresis: a review. Adv. Drug Deliv. Rev. 56, 589–601.

    Article  CAS  PubMed  Google Scholar 

  53. 53. Doukas, A.G. and Kollias, N. (2004) Transdermal drug delivery with a pressure wave. Adv. Drug Deliv. Rev. 56, 559–579.

    Article  CAS  PubMed  Google Scholar 

  54. 54. Xu, Y., Hui, S.W., Frederik, P., and Szoka, F.C., Jr. (1999) Physicochemical characterization and purification of cationic lipoplexes. Biophys. J. 77, 341–353.

    Article  CAS  PubMed  Google Scholar 

  55. 55. Hui, S.W., Langner, M., Zhao, Y.L., Ross, P., Hurley, E., and Chan, K. (1996) The role of helper lipids in cationic liposome-mediated gene transfer. Biophys. J. 71, 590–599.

    Article  CAS  PubMed  Google Scholar 

  56. 56. Dauty, E., Behr, J.P., and Remy, J.S. (2002) Development of plasmid and oligonucleotide nanometric particles. Gene Ther. 9, 743–748.

    Article  CAS  PubMed  Google Scholar 

  57. 57. Xu, Y. and Szoka, F.C., Jr. (1996) Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 35, 5616–5623.

    Article  CAS  PubMed  Google Scholar 

  58. 58. Kircheis, R., Wightman, L., and Wagner, E. (2001) Design and gene delivery activity of modified polyethylenimines. Adv. Drug Deliv. Rev. 53, 341–358.

    Article  CAS  PubMed  Google Scholar 

  59. 59. Bikram, M., Lee, M., Chang, C.W., Janat-Amsbury, M.M., Kern, S.E., and Kim, S.W. (2005) Long-circulating DNA-complexed biodegradable multiblock copolymers for gene delivery: degradation profiles and evidence of dysopsonization. J. Control. Release. 103, 221–233.

    Article  CAS  PubMed  Google Scholar 

  60. 60. Zhao, Z., Wang, J., Mao, H.Q., and Leong, K.W. (2003) Polyphosphoesters in drug and gene delivery. Adv. Drug Deliv. Rev. 55, 483–499.

    Article  CAS  PubMed  Google Scholar 

  61. 61. Jeong, B., Kim, S.W., and Bae, Y.H. (2002) Thermosensitive sol-gel reversible hydrogels. Adv. Drug Deliv. Rev. 54, 37–51.

    Article  CAS  PubMed  Google Scholar 

  62. 62. Rittner, K., Benavente, A., Bompard-Sorlet, A., et al. (2002) New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo. Mol. Ther. 5, 104–114.

    Article  CAS  PubMed  Google Scholar 

  63. 63. Liu, F. and Huang, L. (2001) Improving plasmid DNA-mediated liver gene transfer by prolonging its retention in the hepatic vasculature. J. Gene Med. 3, 569–576.

    Article  CAS  PubMed  Google Scholar 

  64. 64. Plank, C., Anton, M., Rudolph, C., Rosenecker, J., and Krotz, F. (2003) Enhancing and targeting nucleic acid delivery by magnetic force. Expert. Opin. Biol. Ther. 3, 745–758.

    Article  CAS  PubMed  Google Scholar 

  65. 65. Krotz, F., de Wit, C., Sohn, H.Y., Zahler, S., Gloe, T., Pohl, U., and Plank, C. (2003) Magnetofection–a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol. Ther. 7, 700–710.

    Article  CAS  PubMed  Google Scholar 

  66. 66. Gersting, S.W., Schillinger, U., Lausier, J., et al. (2004) Gene delivery to respiratory epithelial cells by magnetofection. J. Gene Med. 6, 913–922.

    Article  CAS  PubMed  Google Scholar 

  67. 67. Cai, D., Mataraza, J.M., Qin, Z.H., et al. (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods. 2, 449–454.

    Article  CAS  PubMed  Google Scholar 

  68. 68. Mahvi, D.M., Sheehy, M.J., and Yang, N.S. (1997) DNA cancer vaccines: a gene gun approach. Immunol. Cell Biol. 75, 456–460.

    Article  CAS  PubMed  Google Scholar 

  69. 69. Kitagawa, T., Iwazawa, T., Robbins, P.D., Lotze, M.T., and Tahara, H. (2003) Advantages and limitations of particle-mediated transfection (gene gun) in cancer immuno-gene therapy using IL-10, IL-12 or B7-1 in murine tumor models. J. Gene Med. 5, 958–965.

    Article  CAS  PubMed  Google Scholar 

  70. 70. Dileo, J., Miller, T.E., Jr., Chesnoy, S., and Huang, L. (2003) Gene transfer to subdermal tissues via a new gene gun design. Hum. Gene Ther. 14, 79–87.

    Article  CAS  PubMed  Google Scholar 

  71. 71. Kim, H.J., Greenleaf, J.F., Kinnick, R.R., Bronk, J.T., and Bolander, M.E. (1996) Ultrasound-mediated transfection of mammalian cells. Hum. Gene Ther. 7, 1339–1346.

    Article  CAS  PubMed  Google Scholar 

  72. 72. Lawrie, A., Brisken, A.F., Francis, S.E., Cumberland, D.C., Crossman, D.C., and Newman, C.M. (2000) Microbubble-enhanced ultrasound for vascular gene delivery. Gene Ther. 7, 2023–2027.

    Article  CAS  PubMed  Google Scholar 

  73. 73. Liang, H.D., Lu, Q.L., Xue, S.A., et al. (2004) Optimisation of ultrasound-mediated gene transfer (sonoporation) in skeletal muscle cells. Ultrasound Med. Biol. 30, 1523–1529.

    Article  PubMed  Google Scholar 

  74. 74. Yang, L., Shirakata, Y., Tamai, K., et al. (2005) Microbubble-enhanced ultrasound for gene transfer into living skin equivalents. J. Dermatol. Sci. 40, 105–114.

    Article  CAS  PubMed  Google Scholar 

  75. 75. Kurata, S., Tsukakoshi, M., Kasuya, T., and Ikawa, Y. (1986) The laser method for efficient introduction of foreign DNA into cultured cells. Exp. Cell Res. 162, 372–378.

    Article  CAS  PubMed  Google Scholar 

  76. 76. Tirlapur, U.K. and Konig, K. (2002) Targeted transfection by femtosecond laser. Nature. 418, 290–291.

    Article  CAS  PubMed  Google Scholar 

  77. 77. Zeira, E., Manevitch, A., Khatchatouriants, A., et al. (2003) Femtosecond infrared laser—an efficient and safe in vivo gene delivery system for prolonged expression. Mol. Ther. 8, 342–350.

    Article  CAS  PubMed  Google Scholar 

  78. 78. Li, L.H., McCarthy, P., and Hui, S.W. (2001) High-efficiency electrotransfection of human primary hematopoietic stem cells. FASEB J. 15, 586–588.

    CAS  PubMed  Google Scholar 

  79. 79. Yew, N.S., Zhao, H., Przybylska, M., et al. (2002) CpG-depleted plasmid DNA vectors with enhanced safety and long-term gene expression in vivo. Mol. Ther. 5, 731–738.

    Article  CAS  PubMed  Google Scholar 

  80. 80. Chen, S., Shohet, R.V., Bekeredjian, R., Frenkel, P., and Grayburn, P.A. (2003) Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J. Am. Coll. Cardiol. 42, 301–308.

    Article  CAS  PubMed  Google Scholar 

  81. 81. Ding, Z., Fach, C., Sasse, A., Godecke, A., and Schrader, J. (2004) A minimally invasive approach for efficient gene delivery to rodent hearts. Gene Ther. 11, 260–265.

    Article  CAS  PubMed  Google Scholar 

  82. 82. Tanaka, S., Iwai, M., Harada, Y., et al. (2000) Targeted killing of carcinoembryonic antigen (CEA)-producing cholangiocarcinoma cells by polyamidoamine dendrimer-mediated transfer of an Epstein-Barr virus (EBV)-based plasmid vector carrying the CEA promoter. Cancer Gene Ther. 7, 1241–1250.

    Article  CAS  PubMed  Google Scholar 

  83. 83. Keravala, A., Groth, A.C., Jarrahian, S., et al. (2006) A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol. Genet. Genomics. 276, 135–146.

    Article  CAS  PubMed  Google Scholar 

  84. 84. Abidor, I.G., Li, L.H., and Hui, S.W. (1994) Studies of cell pellets: II. Osmotic properties, electroporation and related phenomena: membrane interactions. Biophys. J. 67, 427–435.

    Article  CAS  PubMed  Google Scholar 

  85. 85. Lee, R.C., River, L.P., Pan, F.S., Ji, L., and Wollmann, R.L. (1992) Surfactant-induced sealing of electropermeabilized skeletal-muscle membranes in vivo. Proc. Nat. Acad. Sci. U.S.A. 89, 4524–4528.

    Article  CAS  Google Scholar 

  86. 86. Lenz, P., Bacot, S.M., Frazier-Jessen, M.R., and Feldman, G.M. (2003) Nucleoporation of dendritic cells: efficient gene transfer by electroporation into human monocyte-derived dendritic cells. FEBS Lett. 538, 149–154.

    Article  CAS  PubMed  Google Scholar 

  87. 87. Soden, D.M., Larkin, J.O., Collins, C.G., et al. (2006) Successful application of targeted electrochemotherapy using novel flexible electrodes and low dose bleomycin to solid tumours. Cancer Lett. 232, 300–310.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this protocol

Cite this protocol

Hui, SW. (2008). Overview of Drug Delivery and Alternative Methods to Electroporation. In: Li, S. (eds) Electroporation Protocols. Methods in Molecular Biology™, vol 423. Humana Press. https://doi.org/10.1007/978-1-59745-194-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-194-9_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-877-5

  • Online ISBN: 978-1-59745-194-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics