Skip to main content

Electrode Assemblies Used for Electroporation of Cultured Cells

  • Protocol
Electroporation Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 423))

Abstract

Electroporation was initially developed for the introduction of DNA into cells which grow in suspension and was performed in a cuvette with two flat electrodes on opposite sides. Different configurations were subsequently developed for the electroporation of adherent cells in situ, while the cells were growing on nonconductive surfaces or a gold-coated, conductive support. We developed an assembly where the cells grow and are electroporated on optically transparent, electrically conductive indium-tin oxide (ITO). This material promotes excellent cell adhesion and growth, is inert and durable, and does not display spontaneous fluorescence, making the examination of the electroporated cells by fluorescence microscopy possible. The molecules to be electroporated are added to the cells and introduced through an electrical pulse delivered by an electrode placed on top of the cells. We describe several electrode and slide configurations which allow the electroporation of large numbers of cells for large-scale biochemical experiments or for the detection of changes in cell morphology and biochemical properties in situ, with control, nonelectroporated cells growing on the same type of ITO-coated surface, side by side with the electroporated ones. In a modified version, this technique can be adapted for the study of intercellular, junctional communication; the pulse is applied in the presence of a fluorescent dye, such as lucifer yellow, causing its penetration into the cells growing on the conductive half of the slide, and the migration of the dye to the nonelectroporated cells growing on the nonconductive area is microscopically observed under fluorescence illumination. An assembly is also described for the electroporation of sensitive cells without the use of an upper electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Potter, H., Weir, L. and Leder, P. (1984) Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc. Nat. Acad. Sci. U.S.A. 81, 7161–7165.

    Article  CAS  Google Scholar 

  2. 2. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 7, 841–845.

    Google Scholar 

  3. 3. Matsumura, T., Konishi, R., and Nagai, Y. (1982) Culture substrate dependence of mouse fibroblasts survival at 4°C. In Vitro. 18, 510–514.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Raptis, L. and Firth, K.L. (1990) Electroporation of adherent cells in situ. DNA Cell Biol. 9, 615–621.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Raptis, L. (2000) Specific inhibition of growth factor-stimulated ERK1/2 activation in intact cells by electroporation of a Grb2-SH2 binding peptide. Cell Growth Differ. 11, 293–303.

    CAS  PubMed  Google Scholar 

  6. 6. Raptis, L., Vultur, A., Brownell, H.L., and Firth, K.L. (2006) Dissecting pathways: in situ electroporation for the study of signal transduction and gap junctional communication. In: Celis, J.E. (ed.). Cell biology: a laboratory handbook. Academic, San Diego, CA, pp. 341–354.

    Google Scholar 

  7. 7. Potter, H. and Cooke, S.W.F. (1992) Gene transfer into adherent cells growing on microbeads. In: Chang, D.C., Chassy, B.M., Saunders, J.A. and Sowers, A.E. (eds.). Guide to electroporation and electrofusion. Academic, San Diego, CA, pp. 201–208.

    Google Scholar 

  8. 8. Kwee, S., Nielsen, H.V., and Celis, J.E. (1990) Electropermeabilization of human cultured cells grown in monolayers. Incorporation of monoclonal antibodies. Bioelectrochem. Bioenerg. 23, 65–80.

    Article  CAS  Google Scholar 

  9. 9. Zheng, Q. and Chang, D.C. (1991) High-efficiency gene transfection by in situ electroporation of cultured cells. Biochim. Biophys. Acta. 1088, 104–110.

    CAS  PubMed  Google Scholar 

  10. 10. Boitano, S., Dirksen, E.R., and Sanderson, M.J. (1992) Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science. 258, 292–295.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Yang, T.A., Heiser, W.C., and Sedivy, J.M. (1995) Efficient in situ electroporation of mammalian cells grown on microporous membranes. Nucl. Acids. Res. 23, 2803–2810.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Jen, C.P., Wu, W.M., Li, M., and Lin, Y.C. (2004) Site-specific enhancement of gene transfection utilising an attracting electric field for DNA plasmids on the electroporation chip. J. microelectromech. sys. 13, 947–955.

    Article  CAS  Google Scholar 

  13. 13. Yamauchi, F., Kato, K., and Iwata, H. (2005) Layer-by-layer assembly of poly(ethyleneimine) and plasmid DNA onto transparent indium-tin oxide electrodes for temporally and spatially specific gene transfer. Langmuir. 21, 8360–8367.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Giorgetti-Peraldi, S., Ottinger, E., Wolf, G., Ye, B., Burke, T.R., Jr., and Shoelson, S.E. (1997) Cellular effects of phosphotyrosine-binding domain inhibitors on insulin receptor signalling and trafficking. Mol. Cell. Biol. 17, 1180–1188.

    CAS  PubMed  Google Scholar 

  15. 15. Boccaccio, C., Ando, M., Tamagnone, L., et al. (1998) Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature. 391, 285–288.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Bardelli, A., Longati, P., Gramaglia, D., et al. (1998) Uncoupling signal transducers from oncogenic MET mutants abrogates cell transformation and inhibits invasive growth. Proc. Nat. Acad. Sci. U.S.A. 95, 14379–14383.

    Article  CAS  Google Scholar 

  17. 17. Gambarotta, G., Boccaccio, C., Giordano, C., Ando, M., Stella, M.C., and Comglio, M.C. (1996) Ets up-regulates met transcription. Oncogene. 13, 1911–1917.

    CAS  PubMed  Google Scholar 

  18. 18. Boussiotis, V.A., Freeman, G.J., Berezovskaya, A., Barber, D.L., and Nadler, L.M. (1997) Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science. 278, 124–128.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Raptis, L., Vultur, A., Tomai, E., Brownell, H.L., and Firth, K.L. (2006) In situ electroporation of radioactive nucleotides: assessment of Ras activity and 32P-labelling of cellular proteins. In: Celis, J.E. (ed.). Cell biology: a laboratory handbook. Academic, San Diego, CA, pp. 329–339.

    Google Scholar 

  20. 20. Nakashima, N., Ross, D.W., Xiao, S., et al. (1999) The functional role of crk II in actin cytoskeleton organization and mitogenesis. J. Biol. Chem. 274, 3001–3008.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Marais, R., Spooner, R.A., Stribbling, S.M., Light, Y., Martin, J., and Springer, C.J. (1997) A cell surface tethered enzyme improves efficiency in gene-directed enzyme prodrug therapy. Nat. Biotechnol. 15, 1373–1377.

    Article  CAS  PubMed  Google Scholar 

  22. 22. Brownell, H.L., Lydon, N., Schaefer, E., Roberts, T.M., and Raptis, L. (1998) Inhibition of epidermal growth factor-mediated ERK1/2 activation by in situ electroporation of nonpermeant [(alkylamino)methyl]acrylophenone derivatives. DNA Cell Biol. 17, 265–274.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Chang, D.C. (1989) Cell poration and cell fusion using an oscillating electric field. Biophys. J. 56, 641–652.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Wegener, J., Keese, C.R., and Giaever, I. (2002) Recovery of adherent cells after in situ electroporation monitored electrically. Biotechniques. 33, 348–352.

    CAS  PubMed  Google Scholar 

  25. 25. Brownell, H.L., Firth, K.L., Kawauchi, K., Delovitch, T.L., and Raptis, L. (1997) A novel technique for the study of Ras activation: electroporation of [α32P]GTP. DNA Cell Biol. 16, 103–110.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Boussiotis, V.A., Freeman, G.J., Berezovskaya, A., Barber, D.L., and Nadler, L.M. (1997) Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science. 278, 124–128.

    Article  CAS  PubMed  Google Scholar 

  27. 27. Firth, K.L., Brownell, H.L., and Raptis, L. (1997) Improved procedure for electroporation of peptides into adherent cells in situ. Biotechniques. 23, 644–645.

    CAS  PubMed  Google Scholar 

  28. 28. Raptis, L., Brownell, H.L., Firth, K.L., and MacKenzie, L.W. (1994) A novel technique for the study of intercellular, junctional communication: electroporation of adherent cells on a partly conductive slide. DNA Cell Biol. 13, 963–975.

    Article  CAS  PubMed  Google Scholar 

  29. 29. Raptis, L., Liu, S.K.W., Firth, K.L., Stiles, C.D., and Alberta, J.A. (1995) Electroporation of peptides into adherent cells in situ. Biotechniques. 18, 104–114.

    CAS  PubMed  Google Scholar 

  30. 30. Folkman, J. and Moscona, A. (1978) Role of cell shape in growth control. Nature. 273, 345–349.

    Article  CAS  PubMed  Google Scholar 

  31. 31. Tomai, E., Brownell, H.L., Tufescu, T., et al. (1998) A functional assay for intercellular, junctional communication in cultured human lung carcinoma cells. Lab. Invest. 78, 639–640.

    CAS  PubMed  Google Scholar 

  32. 32. Brownell, H.L., Narsimhan, R.P., Corbley, M.J., Mann, V.M., Whitfield, J.J., and Raptis, L. (1996) Ras is involved in gap junction closure in mouse fibroblasts or preadipocytes but not in differentiated adipocytes. DNA & Cell Biol. 15, 443–451.

    Article  CAS  Google Scholar 

  33. 33. Tomai, E., Brownell, H.L., Tufescu, T., Reid, K., and Raptis, L. (1999) Gap junctional communication in lung carcinoma cells. Lung Cancer. 23, 223–231.

    Article  CAS  PubMed  Google Scholar 

  34. 34. Xie, H.Q., Huang, R., and Hu, V.W. (1992) Intercellular communication through gap junctions is reduced in senescent cells. Biophys. J. 62, 45–47.

    Article  CAS  PubMed  Google Scholar 

  35. 35. Raptis, L., Tomai, E., and Firth, K.L. (2000) Improved procedure for examination of gap junctional, intercellular communication by in situ electroporation on a partly conductive slide. Biotechniques 29, 222–226.

    CAS  PubMed  Google Scholar 

  36. 36. Anagnostopoulou, A., Vultur, A., Arulanandam, R., et al. (2006) Differential effects of Stat3 inhibition in sparse vs confluent normal and breast cancer cells. Cancer Lett. 242, 120–132.

    Article  CAS  PubMed  Google Scholar 

  37. 37. Anagnostopoulou, A., Cao, J., Vultur, A., Firth, K., and Raptis L. (2007) Examination of gap junctional, intercellular communication by in situ electroporation on two co-planar indium-tin oxide electrodes. Molecular Oncology. 1, 226–231.

    Article  PubMed  Google Scholar 

  38. 38. Raptis, L., Balabo, V., Hsu, T., et al. (2003) In situ electroporation of large numbers of cells using minimal volumes of material. Anal. Biochem. 317, 124–128.

    Article  CAS  PubMed  Google Scholar 

  39. 39. Tomai, E., Vultur, A., Balboa, V., et al. (2003) In situ electroporation of radioactive compounds into adherent cells. DNA Cell Biol. 22, 339–346.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial assistance of the Canadian Institutes of Health Research, the Canadian Breast Cancer Research Alliance, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Cancer Research Society Inc., and the Department of Defense Breast Cancer Research Program (BCRP-CDMRP) is gratefully acknowledged. We are grateful to Heather Brownell, Evangelia Tomai, Adina Vultur, Rozanne Arulanandam, and Aikaterini Anagnostopoulou for many helpful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this protocol

Cite this protocol

Raptis, L., Firth, K.L. (2008). Electrode Assemblies Used for Electroporation of Cultured Cells. In: Li, S. (eds) Electroporation Protocols. Methods in Molecular Biology™, vol 423. Humana Press. https://doi.org/10.1007/978-1-59745-194-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-194-9_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-877-5

  • Online ISBN: 978-1-59745-194-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics