Skip to main content

Taking Electroporation-Based Delivery of DNA Vaccination into Humans: A Generic Clinical Protocol

  • Protocol
Electroporation Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 423))

Abstract

We are presently aware of two early-phase DNA vaccine clinical trials in humans using electroporation-enhanced vaccine delivery. Moreover, two phase I immunogenetherapy studies are in progress and several tolerability studies have been performed on healthy volunteers. We have used knowledge from these studies to compose a template for clinical protocols involving electroporation-mediated gene delivery. In this template the emphasis will be on aspects related to electroporation. In addition, we will discuss general topics concerning electroporation-augmented DNA vaccination in human subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Weiner, D.B. (1995) New vaccine strategies. Mol. Med. Today. 1, 108–109.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Widera, G., Austin, M., Rabussay, D., et al. (2000) Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J. Immunol. 164, 4635–4640.

    CAS  PubMed  Google Scholar 

  3. 3. Rabussay, D., Dev, N.B., Fewell, J., Smith, L.C., Widera, G., and Zhang, L. (2003) Enhancement of therapeutic drug and DNA delivery into cells by electroporation. J. Phys. D. 36, 348–363.

    Article  CAS  Google Scholar 

  4. 4. Babiuk, S., Baca-Estrada, M.E., Foldvari, M., et al. (2003) Needle-free topical electroporation improves gene expression from plasmids administered in porcine skin. Mol. Ther. 8, 992–998.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Vangasseri, D.P., Han, S.J., and Huang, L. (2005) Lipid-protamine-DNA-mediated antigen delivery. Curr. Drug Deliv. 2, 401–406.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Spik, K., Shurtleff, A., McElroy, A.K., Guttieri, M.C., Hooper, J.W., and Schmaljohn, C. (2006) Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine. 24, 4657–4666.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Rompato, G., Ling, E., Chen, Z., Van, K.H., and Garmendia, A.E. (2006) Positive inductive effect of IL-2 on virus-specific cellular responses elicited by a PRRSV-ORF7 DNA vaccine in swine. Vet. Immunol. Immunopathol. 109, 151–160.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Ulmer, J. B., Wahren, B., and Liu, M.A. (2006) Gene-based vaccines: recent technical and clinical advances. Trends Mol. Med. 12, 216–222.

    Article  CAS  PubMed  Google Scholar 

  9. Minke, J.M., Siger, L., Karaca, K., et al. (2004) Recombinant canarypoxvirus vaccine carrying the prM/E genes of West Nile virus protects horses against a West Nile virus-mosquito challenge. Arch. Virol. Suppl. 221–230.

    Google Scholar 

  10. 10. Garver, K.A., LaPatra, S.E., and Kurath, G. (2005) Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Dis. Aquat. Organ. 64, 13–22.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Babiuk, S., Baca-Estrada, M., Foldvari, M., et al. (2002) Electroporation improves the efficacy of DNA vaccines in large animals. Vaccine. 20, 3399.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Otten, G.R., Schaefer, M., Doe, B., et al. (2006) Potent immunogenicity of an HIV-1 gag-pol fusion DNA vaccine delivered by in vivo electroporation. Vaccine. 24, 4503–4509.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Li, Z., Zhang, H., Fan, X., et al. (2006) DNA electroporation prime and protein boost strategy enhances humoral immunity of tuberculosis DNA vaccines in mice and non-human primates. Vaccine. 24, 4565–4568.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Babiuk, S., Baca-Estrada, M.E., Foldvari, M., et al. (2004) Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J. Biotechnol. 110, 1–10.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Heller, L., Merkler, K., Westover, J., et al. (2006) Evaluation of toxicity following electrically mediated interleukin-12 gene delivery in a B16 mouse melanoma model. Clin. Cancer Res. 12, 3177–3183.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Otten, G., Schaefer, M., Doe, B., et al. (2004) Enhancement of DNA vaccine potency in rhesus macaques by electroporation. Vaccine. 22, 2489–2493.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Draghia-Akli, R., Ellis, K.M., Hill, L.A., Malone, P.B., and Fiorotto, M.L. (2003) High-efficiency growth hormone-releasing hormone plasmid vector administration into skeletal muscle mediated by electroporation in pigs. FASEB J. 17, 526–528.

    CAS  PubMed  Google Scholar 

  18. 18. Wloch, M. K., Hartikka, J., Bozoukova, V., et al. (2006) Electroporation-assisted intramuscular delivery of plasmid DNA vaccines: evaluation of immunogenicity, plasmid DNA persistence and integration. The Secondary International Conference on Modern Vaccines Adjuvants and Delivery Systems, The Royal Society of Medicine, London, UK.

    Google Scholar 

  19. Kjeken, R., Tjelle, T.E., Kvale, D., and Mathiesen, I. (2004) Electroporation of skeletal muscle in humans. Executive Summaries. 7th Annual Meeting of the American Society of Gene Therapy.

    Google Scholar 

  20. 20. Zhang, L. and Rabussay, D. (2005) Progress toward the development of electroporation for muscle-targeted DNA vaccines. International Symposium on Bioelectrochemistry ad Bioenergetics, Portugal, Coimbra.

    Google Scholar 

  21. 21. Wang, Z., Troilo, P.J., Wang, X., et al. (2004) Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 11, 711–721.

    Article  CAS  PubMed  Google Scholar 

  22. Fons, M. (2006) Clinical Electroporation. Executive Summaries. 9th Annual Meeting of the Americal Society of Gene Therapy, 24.

    Google Scholar 

  23. Heller, R. (2006) Electroporation-based gene therapy in humans. Executive Summaries. 9th Annual Meeting of the Americal Society of Gene Therapy, 36.

    Google Scholar 

  24. H.Lee Moffitt Cancer and Research Institute. (2006) Phase I Trial of intratumoral pIL-12 electroporation in malignant melanoma. www.clinicaltrials.gov/ct/, NCT00323206.

  25. Vical. (2006) A Phase I trial to evaluate the safety of intra-tumoral VCL-IM01 followed by electroporation in meatstatic melanoma. www.clinicaltrials.gov/ct/, NCT00223899.

  26. Merck. (2006) V930 First Man (FIM) Study. www. clinicaltrials. gov/ct/, NCT00250419.

  27. Rabussay, D., Widera, G., Zhang, L., et al. (2004) Toward the development of electroporation for delivery of DNA vaccines to humans. Executive Summaries. 7th Annual Meeting of the American Society of Gene Therapy.

    Google Scholar 

  28. 28. Tjelle, T. E., Salte, R., Mathiesen, I., and Kjeken, R. (2006) A novel electroporation device for gene delivery in large animals and humans. Vaccine. 24, 4667–4670.

    Article  CAS  PubMed  Google Scholar 

  29. Southampton General Hospital. (2006). Vaccine treatment for prostate cancer that has come back (GTAC No 089). http://www. cancerhelp. org. uk/trials/.

  30. 30. Glenting, J. and Wessels, S. (2005) Ensuring safety of DNA vaccines. Microb. Cell Fact. 4, 26.

    Article  PubMed  Google Scholar 

  31. 31. Poland, G.A., Borrud, A., Jacobson, R.M., et al. (1997) Determination of deltoid fat pad thickness. Implications for needle length in adult immunization. JAMA. 277, 1709–1711.

    Article  CAS  PubMed  Google Scholar 

  32. 32. Estcourt, M.J., Letourneau, S., McMichael, A.J., and Hanke, T. (2005) Vaccine route, dose and type of delivery vector determine patterns of primary CD8 + T cell responses. Eur. J. Immunol. 35, 2532–2540.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this protocol

Cite this protocol

Tjelle, T.E., Rabussay, D., Ottensmeier, C., Mathiesen, I., Kjeken, R. (2008). Taking Electroporation-Based Delivery of DNA Vaccination into Humans: A Generic Clinical Protocol. In: Li, S. (eds) Electroporation Protocols. Methods in Molecular Biology™, vol 423. Humana Press. https://doi.org/10.1007/978-1-59745-194-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-194-9_39

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-877-5

  • Online ISBN: 978-1-59745-194-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics