Skip to main content

Effect of Electroporation on Cardiac Electrophysiology

  • Protocol
Electroporation Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 423))

Abstract

Defibrillation shocks are commonly used to terminate life-threatening arrhythmias. According to the excitation theory of defibrillation, such shocks are aimed at depolarizing the membranes of most cardiac cells, resulting in resynchronization of electrical activity in the heart. If shock-induced transmembrane potentials are large enough, they can cause transient tissue damage due to electroporation. In this review, evidence is presented that electroporation of the heart tissue can occur during clinically relevant intensities of the external electrical field and that electroporation can affect the outcome of defibrillation therapy, being both pro- and antiarrhythmic.

Here, we present experimental evidence for electroporation in cardiac tissue, which occurs above a threshold of 25 V/cm as evident from propidium iodide uptake, transient diastolic depolarization, and reductions of action potential amplitude and its derivative. These electrophysiological changes can induce tachyarrhythmia, due to conduction block and possibly triggered activity; however, our findings provide the foundation for future design of effective methods to deliver genes and drugs to cardiac tissues, while avoiding possible side effects such as arrhythmia and mechanical stunning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Harrison, R.L., Byrne, B.J., and Tung, L. (1998) Electroporation-mediated gene transfer in cardiac tissue. FEBS Lett. 435, 1–5.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Rosen, M.R., Brink, P.R., Cohen, I.S., and Robinson, R.B. (2004) Genes, stem cells and biological pacemakers. Cardiovasc. Res. 64, 12–23.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Kim, J.M., Lim, B.K., Ho, S.H., et al. (2006) TNFR-Fc fusion protein expressed by in vivo electroporation improves survival rates and myocardial injury in coxsackievirus induced murine myocarditis. Biochem. Biophys. Res. Commun. 344, 765–771.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Babbs, C.F., Tacker, W.A., Van Vleet, J.F., Bourland, J.D., and Geddes, L.A. (1980) Therapeutic indices for transchest defibrillator shocks: effective, damaging, and lethal electrical doses. Am. Heart J. 99, 734–738.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Koning, G., Veefkind, A.H., and Schneider, H. (1980) Cardiac damage caused by direct application of defibrillator shocks to isolated Langendorff-perfused rabbit heart. Am. Heart J. 100, 473–482.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Yabe, S., Smith, W.M., Daubert, J.P., Wolf, P.D., Rollins, D.L., and Ideker, R.E. (1990) Conduction disturbances caused by high current density electric fields. Circ. Res. 66, 1190–1203.

    CAS  PubMed  Google Scholar 

  7. 7. Nikolski, V.P., Sambelashvili, A.T., Krinsky, V.I., and Efimov, I.R. (2004) Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks. Am. J. Physiol. Heart Circ. Physiol. 286, H412–H418.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Al- Khadra, A.S., Nikolski, V., and Efimov, I.R. (2000) The role of electroporation in defibrillation. Circ. Res. 87, 797–804.

    CAS  PubMed  Google Scholar 

  9. 9. Goldman, D.E. (1943) Potential, impedance, and rectification in membranes. J. Gen. Physiol. 27, 37–50.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Abidor, I.G., Arakelyen, V.B., Chernomordik, L.V., Chizmadzhev, Y.A., Pastushenko, V.F., and Tarasevich, R. (1979) Electric breakdown of bilayer lipid membranes. I. The main experimental facts and their qualitative discussion. Bioelectrochem. Bioenerg. 6, 37–52.

    Article  CAS  Google Scholar 

  11. 11. Tung, L., Troiano, G.C., Sharma, V., Raphael, R.M., and Stebe, K.J. (1999) Changes in electroporation thresholds of lipid membranes by surfactants and peptides. Ann. N.Y. Acad. Sci. 888, 249–265.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Melikov, K.C., Frolov, V.A., Shcherbakov, A., Samsonov, A.V., Chizmadzhev, Y.A., and Chernomordik, L.V. (2001) Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys. J. 80, 1829–1836.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Tsong, T.Y. (1991) Electroporation of cell membranes. Biophys. J. 60, 297–306.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Chang, D.C. and Reese, T.S. (1990) Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys. J. 58, 1–12.

    Article  CAS  PubMed  Google Scholar 

  15. 15. O'Neill, R.J. and Tung, L. (1991) Cell-attached patch clamp study of the electropermeabilization of amphibian cardiac cells. Biophys. J. 59, 1028–1039.

    Article  PubMed  Google Scholar 

  16. 16. Krauthamer, V. and Jones, J.L. (1997) Calcium dynamics in cultured heart cells exposed to defibrillator-type electric shocks. Life Sci. 60, 1977–1985.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Cheng, D.K., Tung, L., and Sobie, E.A. (1999) Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am. J. Physiol. 277, H351–H362.

    CAS  PubMed  Google Scholar 

  18. 18. Song, Y.M. and Ochi, R. (2002) Hyperpolarization and lysophosphatidylcholine induce inward currents and ethidium fluorescence in rabbit ventricular myocytes. J. Physiol. 545, 463–473.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Krassowska, W. and Neu, J.C. (1994) Response of a single cell to an external electric field. Biophys. J. 66, 1768–1776.

    Article  CAS  PubMed  Google Scholar 

  20. 20. Chizmadzhev, Y.A., Kuzmin, P.I., Kumenko, D.A., Zimmerberg, J., and Cohen, F.S. (2000) Dynamics of fusion pores connecting membranes of different tensions. Biophys. J. 78, 2241–2256.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Smith, K.C., Neu, J.C., and Krassowska, W. (2004) Model of creation and evolution of stable electropores for DNA delivery. Biophys. J. 86, 2813–2826.

    Article  CAS  PubMed  Google Scholar 

  22. 22. De Bruin, K.A. and Krassowska, W. (1999) Modeling electroporation in a single cell. II. Effects of ionic concentrations. Biophys. J. 77, 1225–1233.

    Article  Google Scholar 

  23. 23. De Bruin, K.A. and Krassowska, W. (1999) Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys. J. 77, 1213–1224.

    Article  Google Scholar 

  24. 24. Aguel, F., De Bruin, K.A., Krassowska, W., and Trayanova, N.A. (1999) Effects of electroporation on the transmembrane potential distribution in a two-dimensional bidomain model of cardiac tissue. J. Cardiovasc. Electrophysiol. 10, 701–714.

    Article  CAS  PubMed  Google Scholar 

  25. 25. De Bruin, K.A. and Krassowska, W. (1998) Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks. Ann. Biomed. Eng. 26, 584–596.

    Article  Google Scholar 

  26. 26. Tung, L., Tovar, O., Neunlist, M., Jain, S.K., and O'Neill, R.J. (1994) Effects of strong electrical shock on cardiac muscle tissue. Ann. N.Y. Acad. Sci. 720, 160–175.

    Article  CAS  PubMed  Google Scholar 

  27. 27. Tovar, O. and Tung, L. (1992) Electroporation and recovery of cardiac cell membrane with rectangular voltage pulses. Am. J. Physiol. 263, H1128–H1136.

    CAS  PubMed  Google Scholar 

  28. 28. Kodama, I., Shibata, N., Sakuma, I., et al. (1994) Aftereffects of high-intensity DC stimulation on the electromechanical performance of ventricular muscle. Am. J. Physiol. 267, H248–H258.

    CAS  PubMed  Google Scholar 

  29. 29. Neunlist, M. and Tung, L. (1997) Dose-dependent reduction of cardiac transmembrane potential by high-intensity electrical shocks. Am. J. Physiol. 273, H2817–H2825.

    CAS  PubMed  Google Scholar 

  30. Fedorov, V.V., Hemphill, M., Kostecki, G., Li, L., and Efimov, I.R. (2007) Low electroporation threshold, conduction block, focal activity and reentrant arrhythmia in the rabbit atria: possible mechanisms of stunning and defibrillation failure. Circulation (in press).

    Google Scholar 

  31. 31. Gray, R.A., Huelsing, D.J., Aguel, F., and Trayanova, N.A. (2001) Effect of strength and timing of transmembrane current pulses on isolated ventricular myocytes. J. Cardiovasc. Electrophysiol. 12, 1129–1137.

    Article  CAS  PubMed  Google Scholar 

  32. 32. Sharma, V. and Tung, L. (2002) Spatial heterogeneity of transmembrane potential responses of single guinea-pig cardiac cells during electric field stimulation. J. Physiol. 542, 477–492.

    Article  CAS  PubMed  Google Scholar 

  33. 33. Fast, V.G., Rohr, S., and Ideker, R.E. (2000) Nonlinear changes of transmembrane potential caused by defibrillation shocks in strands of cultured myocytes. Am. J. Physiol. Heart Circ. Physiol. 278, H688–H697.

    CAS  PubMed  Google Scholar 

  34. 34. Efimov, I.R., Cheng, Y.N., Biermann, M., Van Wagoner, D.R., Mazgalev, T., and Tchou, P.J. (1997) Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. J. Cardiovasc. Electrophysiol. 8, 1031–1045.

    Article  CAS  PubMed  Google Scholar 

  35. 35. Fast, V.G., Sharifov, O.F., Cheek, E.R., Newton, J.C., and Ideker, R.E. (2002) Intramural virtual electrodes during defibrillation shocks in left ventricular wall assessed by optical mapping of membrane potential. Circulation. 106, 1007–1014.

    Article  PubMed  Google Scholar 

  36. 36. Knisley, S.B., Blitchington, T.F., Hill, B.C., et al. (1993) Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells. Circ. Res. 72, 255–270.

    CAS  PubMed  Google Scholar 

  37. 37. Windisch, H., Ahammer, H., Schaffer, P., Muller, W., and Platzer, D. (1995) Optical multisite monitoring of cell excitation phenomena in isolated cardiomyocytes. Pflugers Arch. 430, 508–518.

    Article  CAS  PubMed  Google Scholar 

  38. 38. Cheek, E.R. and Fast, V.G. (2004) Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation. Circ. Res. 94, 208–214.

    Article  CAS  PubMed  Google Scholar 

  39. 39. Akar, F.G., Roth, B.J., and Rosenbaum, D.S. (2001) Optical measurement of cell-to-cell coupling in intact heart using subthreshold electrical stimulation. Am. J. Physiol. Heart Circ. Physiol. 281, H533–H542.

    CAS  PubMed  Google Scholar 

  40. 40. Cheng, Y., Tchou, P.J., and Efimov, I.R. (1999) Spatio-temporal characterization of electroporation during defibrillation. Biophys. J. 76, A85.

    Google Scholar 

  41. 41. Zhou, X., Ideker, R.E., Blitchington, T.F., Smith, W.M., and Knisley, S.B. (1995). Optical transmembrane potential measurements during defibrillation-strength shocks in perfused rabbit hearts. Circ. Res. 77, 593–602.

    CAS  PubMed  Google Scholar 

  42. 42. Neunlist, M. and Tung, L. (1995) Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation. Biophys. J. 68, 2310–2322.

    Article  CAS  PubMed  Google Scholar 

  43. 43. Fast, V.G. and Cheek, E.R. (2002) Optical mapping of arrhythmias induced by strong electrical shocks in myocyte cultures. Circ. Res. 90, 664–670.

    Article  CAS  PubMed  Google Scholar 

  44. 44. Sharifov, O.F., Ideker, R.E., and Fast, V.G. (2004) High-resolution optical mapping of intramural virtual electrodes in porcine left ventricular wall. Cardiovasc. Res. 64, 448–456.

    Article  CAS  PubMed  Google Scholar 

  45. 45. Fast, V.G., Cheek, E.R., Pollard, A.E., and Ideker, R.E. (2004) Effects of electrical shocks on Cai 2+ and V m in myocyte cultures. Circ. Res. 94, 1589–1597.

    Article  CAS  PubMed  Google Scholar 

  46. 46. Cheek, E.R., Ideker, R.E., and Fast, V.G. (2000) Nonlinear changes of transmembrane potential during defibrillation shocks: role of Ca(2+) current. Circ. Res. 87, 453–459.

    CAS  PubMed  Google Scholar 

  47. 47. Jones, J.L., Jones, R.E., and Balasky, G. (1987) Microlesion formation in myocardial cells by high-intensity electric field stimulation. Am. J. Physiol. 253, 480–486.

    Google Scholar 

  48. 48. Shirakashi, R., Kostner, C.M., Muller, K.J., Kurschner, M., Zimmermann, U., and Sukhorukov, V.L. (2002) Intracellular delivery of trehalose into mammalian cells by electropermeabilization. J. Membr. Biol. 189, 45–54.

    Article  CAS  PubMed  Google Scholar 

  49. 49. Prevost, J.L. and Battelli, F. (1899) Sur quel ques effets des dechanges electriques sur le coer mammifres. Comptes Rendus Seances Acad. Sci. 129, 1267.

    Google Scholar 

  50. 50. Gurvich, N.L. and Yuniev, G.S. (1939) Restoration of regular rhythm in the mammalian fibrillating heart. Byulletin Eksper. Biol. Med. 8, 55–58.

    Google Scholar 

  51. 51. Donoso, E., Cohn, L.J., and Friedberg, C.K. (1967) Ventricular arrhythmias after precordial electric shock. Am. Heart J. 73, 595–601.

    Article  CAS  PubMed  Google Scholar 

  52. 52. Waldecker, B., Brugada, P., Zehender, M., Stevenson, W., and Welens, H.J. (1986) Ventricular arrhythmias after precordial electric shock. Am. J. Cardiol. 57, 120–123.

    Article  CAS  PubMed  Google Scholar 

  53. 53. Tovar, O. and Tung, L. (1991) Electroporation of cardiac cell membranes with monophasic or biphasic rectangular pulses. Pacing Clin. Electrophysiol. 14, 1887–1892.

    Article  CAS  PubMed  Google Scholar 

  54. 54. Eysmann, S.B., Marchlinski, F.E., Buxton, A.E., and Josephson, M.E. (1986) Electrocardiographic changes after cardioversion of ventricular arrhythmias. Circulation. 73, 73–81.

    CAS  PubMed  Google Scholar 

  55. 55. Stickney, R.E., Doherty, A., Kudenchuk, P.J., et al. (1999) Survival and postshock ECG rhythms for out-of-hospital defibrillation. PACE. 22, 740.

    Google Scholar 

  56. 56. Sparks, P.B., Kulkarni, R., Vohra, J.K., et al. (1998) Effect of direct current shocks on left atrial mechanical function in patients with structural heart disease. J. Am. Coll. Cardiol. 31, 1395–1399.

    Article  CAS  PubMed  Google Scholar 

  57. 57. Sparks, P.B., Jayaprakash, S., Mond, H.G., Vohra, J.K., Grigg, L.E., and Kalman, J.M. (1999) Left atrial mechanical function after brief duration atrial fibrillation. J. Am. Coll. Cardiol. 33, 342–349.

    Article  CAS  PubMed  Google Scholar 

  58. 58. Grimm, R.A., Stewart, W.J., Arheart, K., Thomas, J.D., and Klein, A.L. (1997) Left atrial appendage “stunning” after electrical cardioversion of atrial flutter: an attenuated response compared with atrial fibrillation as the mechanism for lower susceptibility to thromboembolic events. J. Am. Coll. Cardiol. 29, 582–589.

    Article  CAS  PubMed  Google Scholar 

  59. 59. Kam, R.M., Garan, H., McGovern, B.A., Ruskin, J.N., and Harthorne, J.W. (1997) Transient right bundle branch block causing R wave attenuation postdefibrillation. Pacing Clin. Electrophysiol. 20, 130–131.

    Article  CAS  PubMed  Google Scholar 

  60. 60. Hasdemir, C., Shah, N., Rao, A.P., et al. (2002) Analysis of troponin I levels after spontaneous implantable cardioverter defibrillator shocks. J. Cardiovasc. Electrophysiol. 13, 144–150.

    Article  PubMed  Google Scholar 

  61. 61. Osswald, S., Trouton, T.G., O'Nunain, S.S., Holden, H.B., Ruskin, J.N., and Garan, H. (1994) Relation between shock-related myocardial injury and defibrillation efficacy of monophasic and biphasic shocks in a canine model. Circulation. 90, 2501–2509.

    CAS  PubMed  Google Scholar 

  62. 62. Peleska, B. (1965) Problems of defibrillation and stimulation of the myocardium. Zentralbl. Chir. 90, 1174–1188.

    CAS  PubMed  Google Scholar 

  63. 63. Gurvich, N.L. (1975) The main principles of cardiac defibrillation. Medicine, Moscow.

    Google Scholar 

  64. 64. Ohuchi, K., Fukui, Y., Sakuma, I., Shibata, N., Honjo, H., and Kodama, I. (2002) A dynamic action potential model analysis of shock-induced aftereffects in ventricular muscle by reversible breakdown of cell membrane. IEEE Trans. Biomed. Eng. 49, 18–30.

    Article  PubMed  Google Scholar 

  65. 65. Pyatt, J.R., Somauroo, J.D., Jackson, M., et al. (2002) Long-term survival after permanent pacemaker implantation: analysis of predictors for increased mortality. Europace. 4, 113–119.

    Article  CAS  PubMed  Google Scholar 

  66. 66. Miake, J., Marban, E., and Nuss, H.B. (2002) Biological pacemaker created by gene transfer. Nature. 419, 132–133.

    Article  CAS  PubMed  Google Scholar 

  67. 67. Potapova, I., Plotnikov, A., Lu, Z., et al. (2004) Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ. Res. 94, 952–959.

    Article  CAS  PubMed  Google Scholar 

  68. 68. Neumann, E., Schaefer- Ridder, M., Wang, Y., and Hofschneider, P.H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845.

    CAS  PubMed  Google Scholar 

  69. 69. Dean, D.A. (2005) Nonviral gene transfer to skeletal, smooth, and cardiac muscle in living animals. Am. J. Physiol. Cell Physiol. 289, C233–C245.

    Article  CAS  PubMed  Google Scholar 

  70. 70. Aihara, H. and Miyazaki, J. (1998) Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16, 867–870.

    Article  CAS  PubMed  Google Scholar 

  71. 71. Wang, Y., Bai, Y., Price, C., et al. (2001) Combination of electroporation and DNA/dendrimer complexes enhances gene transfer into murine cardiac transplants. Am. J. Transplant. 1, 334–338.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Heart, Lung, and Blood Institute Grant R01HL-074283.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this protocol

Cite this protocol

Fedorov, V.V., Nikolski, V.P., Efimov, I.R. (2008). Effect of Electroporation on Cardiac Electrophysiology. In: Li, S. (eds) Electroporation Protocols. Methods in Molecular Biology™, vol 423. Humana Press. https://doi.org/10.1007/978-1-59745-194-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-194-9_34

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-877-5

  • Online ISBN: 978-1-59745-194-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics