Skip to main content

Delivery of DNA into Muscle for Treating Systemic Diseases: Advantages and Challenges

  • Protocol
Electroporation Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 423))

Abstract

An efficient and safe method to deliver DNA in vivo is a requirement for several purposes, such as the study of gene function and gene therapy applications. Among the different nonviral delivery methods currently under investigation, in vivo DNA electrotransfer has proven to be one of the most efficient and simple methods. This technique is a physical method of gene delivery consisting of a local application of electric pulses after injection of DNA.

This technique can be applied to almost any tissue of a living animal, including tumors, skin, liver, kidney, artery, retina, cornea, or even brain, but the focus of this review will be on electrotransfer of plasmid DNA into skeletal muscle and its possible therapeutic uses for systemic diseases. Skeletal muscle is a good target for electrotransfer of DNA because of the following features: a large volume of easily accessible tissue, an endocrine organ capable of expressing several local and systemic factors, and muscle fibers as postmitotic cells have a long lifespan, which allows long-term gene expression.

In this review, we will describe the main characteristics of DNA electrotransfer, including toxicity and safety issues related to this technique. We will focus on the important possible therapeutic applications of electrotransfer for systemic diseases demonstrated in animal models in the recent years, in the fields of monogenic diseases, tissue-specific diseases, metabolic disorders, immune-system-related diseases, and cancer. Finally, we will discuss the advantages and challenges of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P.H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845.

    CAS  PubMed  Google Scholar 

  2. 2. Belehradek, J., Jr., Orlowski, S., Ramirez, L.H., Pron, G., Poddevin, B., and Mir, L.M. (1994) Electropermeabilization of cells in tissues assessed by the qualitative and quantitative electroloading of bleomycin. Biochim. Biophys. Acta. 1190, 155–163.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Mir, L.M. and Orlowski, S. (1999) Mechanisms of electrochemotherapy. Adv. Drug Deliv. Rev. 35, 107–118.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Sersa, G., Stabuc, B., Cemazar, M., Miklavcic, D., and Rudolf, Z. (2000) Electrochemotherapy with cisplatin: the systemic antitumour effectiveness of cisplatin can be potentiated locally by the application of electric pulses in the treatment of malignant melanoma skin metastases. Melanoma Res. 10, 381–385.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Rebersek, M., Cufer, T., Cemazar, M., Kranjc, S., and Sersa, G. (2004) Electrochemotherapy with cisplatin of cutaneous tumor lesions in breast cancer. Anticancer Drugs. 15, 593–597.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Rols, M.P., Tamzali, Y., and Teissie, J. (2002) Electrochemotherapy of horses. A preliminary clinical report. Bioelectrochemistry. 55, 101–105.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Heller, L.C., Ugen, K., and Heller, R. (2005) Electroporation for targeted gene transfer. Expert Opin. Drug Deliv. 2, 255–268.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Li, S. (2004) Electroporation gene therapy: new developments in vivo and in vitro. Curr. Gene Ther. 4, 309–316.

    CAS  PubMed  Google Scholar 

  9. Trollet, C., Bigey, P., and Scherman, D. (2005) Electrotransfection: an overview. In: Schleef, M. (ed.). DNA-pharmaceuticals. Wiley-VCH, Weinheim, Chap. 11, pp. 189–218.

    Google Scholar 

  10. 10. Prud'homme, G.J., Glinka, Y., Khan, A.S., and Draghia-Akli, R. (2006) Electroporation-enhanced nonviral gene transfer for the prevention or treatment of immunological, endocrine and neoplastic diseases. Curr. Gene Ther. 6, 243–273.

    Article  PubMed  Google Scholar 

  11. 11. Faurie, C., Phez, E., Golzio, M., et al. (2004) Effect of electric field vectoriality on electrically mediated gene delivery in mammalian cells. Biochim. Biophys. Acta. 1665, 92–100.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Mir, L.M., Bureau, M.F., Rangara, R., Schwartz, B., and Scherman, D. (1998) Long-term, high level in vivo gene expression after electric pulse-mediated gene transfer into skeletal muscle. C.R. Acad. Sci. III. 321, 893–899.

    CAS  PubMed  Google Scholar 

  13. 13. Vicat, J.M., Boisseau, S., Jourdes, P., et al. (2000) Muscle transfection by electroporation with high-voltage and short-pulse currents provides high-level and long-lasting gene expression. Hum. Gene Ther. 11, 909–916.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Mir, L.M., Moller, P.H., Andre, F., and Gehl, J. (2005) Electric pulse-mediated gene delivery to various animal tissues. Adv. Genet. 54, 83–114.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Mir, L.M., Bureau, M.F., Gehl, J., et al. (1999) High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc. Natl. Acad. Sci. U.S.A. 96, 4262–4267.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Lu, Q.L., Bou-Gharios, G., and Partridge, T.A. (2003) Non-viral gene delivery in skeletal muscle: a protein factory. Gene Ther. 10, 131–142.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Goldspink, G. (2003) Skeletal muscle as an artificial endocrine tissue. Best Pract. Res. Clin. Endocrinol. Metab. 17, 211–222.

    Article  CAS  PubMed  Google Scholar 

  18. 18. Trollet, C., Ibanez-Ruiz, M., Bloquel, C., Valin, G., Scherman, D., and Bigey, P. (2004) Regulation of gene expression using a conditional RNA antisense strategy. J. Genome Sci. Tech. 3, 1–13.

    Article  CAS  Google Scholar 

  19. 19. Bettan, M., Emmanuel, F., Darteil, R., et al. (2000) High-level protein secretion into blood circulation after electric pulse-mediated gene transfer into skeletal muscle. Mol. Ther. 2, 204–210.

    Article  CAS  PubMed  Google Scholar 

  20. 20. Kreiss, P., Bettan, M., Crouzet, J., and Scherman, D. (1999) Erythropoietin secretion and physiological effect in mouse after intramuscular plasmid DNA electrotransfer. J. Gene Med. 1, 245–250.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Honigman, A., Zeira, E., Ohana, P., et al. (2001) Imaging transgene expression in live animals. Mol. Ther. 4, 239–249.

    Article  CAS  PubMed  Google Scholar 

  22. 22. Peng, B., Zhao, Y., Lu, H., Pang, W., and Xu, Y. (2005) In vivo plasmid DNA electroporation resulted in transfection of satellite cells and lasting transgene expression in regenerated muscle fibers. Biochem. Biophys. Res. Commun. 338, 1490–1498.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Gehl, J. and Mir, L.M. (1999) Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization. Biochem. Biophys. Res. Commun. 261, 377–380.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Mathiesen, I. (1999) Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther. 6, 508–514.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Leroy-Willig, A., Bureau, M.F., Scherman, D., and Carlier, P.G. (2005) In vivo NMR imaging evaluation of efficiency and toxicity of gene electrotransfer in rat muscle. Gene Ther. 12, 1434–1443.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Hartikka, J., Sukhu, L., Buchner, C., et al. (2001) Electroporation-facilitated delivery of plasmid DNA in skeletal muscle: plasmid dependence of muscle damage and effect of poloxamer 188. Mol. Ther. 4, 407–415.

    Article  CAS  PubMed  Google Scholar 

  27. 27. Durieux, A.C., Bonnefoy, R., Busso, T., and Freyssenet, D. (2004) In vivo gene electrotransfer into skeletal muscle: effects of plasmid DNA on the occurrence and extent of muscle damage. J. Gene Med. 6, 809–816.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Bertrand, A., Ngo-Muller, V., Hentzen, D., Concordet, J.P., Daegelen, D., and Tuil, D. (2003) Muscle electrotransfer as a tool for studying muscle fiber-specific and nerve-dependent activity of promoters. Am. J. Physiol. Cell Physiol. 285, C1071–C1081.

    CAS  PubMed  Google Scholar 

  29. 29. Davis, H.L., Whalen, R.G., and Demeneix, B.A. (1993) Direct gene transfer into skeletal muscle in vivo: factors affecting efficiency of transfer and stability of expression. Hum. Gene Ther. 4, 151–159.

    Article  PubMed  Google Scholar 

  30. 30. Mennuni, C., Calvaruso, F., Zampaglione, I., et al. (2002) Hyaluronidase increases electrogene transfer efficiency in skeletal muscle. Hum. Gene Ther. 13, 355–365.

    Article  CAS  PubMed  Google Scholar 

  31. 31. Favre, D., Cherel, Y., Provost, N., et al. (2000) Hyaluronidase enhances recombinant adeno-associated virus (rAAV)-mediated gene transfer in the rat skeletal muscle. Gene Ther. 7, 1417–1420.

    Article  CAS  PubMed  Google Scholar 

  32. 32. McMahon, J.M., Signori, E., Wells, K.E., Fazio, V.M., and Wells, D.J. (2001) Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase—increased expression with reduced muscle damage. Gene Ther. 8, 1264–1270.

    Article  CAS  PubMed  Google Scholar 

  33. 33. Molnar, M.J., Gilbert, R., Lu, Y., et al. (2004) Factors influencing the efficacy, longevity, and safety of electroporation-assisted plasmid-based gene transfer into mouse muscles. Mol. Ther. 10, 447–455.

    Article  CAS  PubMed  Google Scholar 

  34. 34. Ferrer, A., Foster, H., Wells, K.E., et al. (2004) Long-term expression of full-length human dystrophin in transgenic mdx mice expressing internally deleted human dystrophins. Gene Ther. 11, 884–893.

    Article  CAS  PubMed  Google Scholar 

  35. 35. Fewell, J.G., MacLaughlin, F., Mehta, V., et al. (2001) Gene therapy for the treatment of hemophilia B using PINC-formulated plasmid delivered to muscle with electroporation. Mol. Ther. 3, 574–583.

    Article  CAS  PubMed  Google Scholar 

  36. 36. Arruda, V.R., Hagstrom, J.N., Deitch, J., et al. (2001) Posttranslational modifications of recombinant myotube-synthesized human factor IX. Blood. 97, 130–138.

    Article  CAS  PubMed  Google Scholar 

  37. 37. Long, Y.C., Jaichandran, S., Ho, L.P., Tien, S.L., Tan, S.Y., and Kon, O.L. (2005) FVIII gene delivery by muscle electroporation corrects murine hemophilia A. J. Gene Med. 7, 494–505.

    Article  CAS  PubMed  Google Scholar 

  38. 38. Mei, W.H., Qian, G.Q., Zhang, X.Q., Zhang, P., and Lu, J. (2006) Sustained expression of Epstein-Barr virus episomal vector mediated factor VIII in vivo following muscle electroporation. Haemophilia. 12, 271–279.

    Article  CAS  PubMed  Google Scholar 

  39. 39. Maruyama, H., Sugawa, M., Moriguchi, Y., et al. (2000) Continuous erythropoietin delivery by muscle-targeted gene transfer using in vivo electroporation. Hum. Gene Ther. 11, 429–437.

    Article  CAS  PubMed  Google Scholar 

  40. 40. Payen, E., Bettan, M., Rouyer-Fessard, P., Beuzard, Y., and Scherman, D. (2001) Improvement of mouse beta-thalassemia by electrotransfer of erythropoietin cDNA. Exp. Hematol. 29, 295–300.

    Article  CAS  PubMed  Google Scholar 

  41. 41. Maruyama, H., Ataka, K., Gejyo, F., et al. (2001) Long-term production of erythropoietin after electroporation-mediated transfer of plasmid DNA into the muscles of normal and uremic rats. Gene Ther. 8, 461–468.

    Article  CAS  PubMed  Google Scholar 

  42. 42. Dalle, B., Henri, A., Rouyer-Fessard, P., et al. (2001) Dimeric erythropoietin fusion protein with enhanced erythropoietic activity in vitro and in vivo. Blood. 97, 3776–3782.

    Article  CAS  PubMed  Google Scholar 

  43. 43. Rizzuto, G., Cappelletti, M., Maione, D., et al. (1999) Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc. Natl. Acad. Sci. U.S.A. 96, 6417–6422.

    Article  CAS  PubMed  Google Scholar 

  44. 44. Fattori, E., Cappelletti, M., Zampaglione, I., et al. (2005) Gene electro-transfer of an improved erythropoietin plasmid in mice and non-human primates. J. Gene Med. 7, 228–236.

    Article  CAS  PubMed  Google Scholar 

  45. 45. Komamura, K., Tatsumi, R., Miyazaki, J., et al. (2004) Treatment of dilated cardiomyopathy with electroporation of hepatocyte growth factor gene into skeletal muscle. Hypertension. 44, 365–371.

    Article  CAS  PubMed  Google Scholar 

  46. 46. Umeda, Y., Marui, T., Matsuno, Y., et al. (2004) Skeletal muscle targeting in vivo electroporation-mediated HGF gene therapy of bleomycin-induced pulmonary fibrosis in mice. Lab. Invest. 84, 836–844.

    Article  CAS  PubMed  Google Scholar 

  47. 47. Pradat, P.F., Kennel, P., Naimi-Sadaoui, S., et al. (2002) Viral and non-viral gene therapy partially prevents experimental cisplatin-induced neuropathy. Gene Ther. 9, 1333–1337.

    Article  CAS  PubMed  Google Scholar 

  48. 48. Lesbordes, J.C., Bordet, T., Haase, G., et al. (2002) In vivo electrotransfer of the cardiotrophin-1 gene into skeletal muscle slows down progression of motor neuron degeneration in pmn mice. Hum. Mol. Genet. 11, 1615–1625.

    Article  CAS  PubMed  Google Scholar 

  49. 49. Ataka, K., Maruyama, H., Neichi, T., Miyazaki, J., and Gejyo, F. (2003) Effects of erythropoietin-gene electrotransfer in rats with adenine-induced renal failure. Am. J. Nephrol. 23, 315–323.

    Article  CAS  PubMed  Google Scholar 

  50. 50. Rizzuto, G., Cappelletti, M., Mennuni, C., et al. (2000) Gene electrotransfer results in a high-level transduction of rat skeletal muscle and corrects anemia of renal failure. Hum. Gene Ther. 11, 1891–1900.

    Article  CAS  PubMed  Google Scholar 

  51. 51. Draghia-Akli, R., Ellis, K.M., Hill, L.A., Malone, P.B., and Fiorotto, M.L. (2003) High-efficiency growth hormone-releasing hormone plasmid vector administration into skeletal muscle mediated by electroporation in pigs. FASEB J. 17, 526–528.

    CAS  PubMed  Google Scholar 

  52. 52. Draghia-Akli, R. and Fiorotto, M.L. (2004) A new plasmid-mediated approach to supplement somatotropin production in pigs. J. Anim. Sci. 82 (E-Suppl.), E264–E269.

    PubMed  Google Scholar 

  53. 53. Xiang, L., Murai, A., Sugahara, K., Yasui, A., and Muramatsu, T. (2003) Effects of leptin gene expression in mice in vivo by electroporation and hydrodynamics-based gene delivery. Biochem. Biophys. Res. Commun. 307, 440–445.

    Article  CAS  PubMed  Google Scholar 

  54. 54. Mallat, Z., Silvestre, J.S., Le Ricousse-Roussanne, S., et al. (2002) Interleukin-18/interleukin-18 binding protein signaling modulates ischemia-induced neovascularization in mice hindlimb. Circ. Res. 91, 441–448.

    Article  CAS  PubMed  Google Scholar 

  55. 55. Silvestre, J.S., Mallat, Z., Duriez, M., et al. (2000) Antiangiogenic effect of interleukin-10 in ischemia-induced angiogenesis in mice hindlimb. Circ. Res. 87, 448–452.

    CAS  PubMed  Google Scholar 

  56. 56. Nishikage, S., Koyama, H., Miyata, T., Ishii, S., Hamada, H., and Shigematsu, H. (2004) In vivo electroporation enhances plasmid-based gene transfer of basic fibroblast growth factor for the treatment of ischemic limb. J. Surg. Res. 120, 37–46.

    Article  CAS  PubMed  Google Scholar 

  57. 57. Sugano, M., Hata, T., Tsuchida, K., et al. (2004) Local delivery of soluble TNF-alpha receptor 1 gene reduces infarct size following ischemia/reperfusion injury in rats. Mol. Cell Biochem. 266, 127–132.

    Article  CAS  PubMed  Google Scholar 

  58. 58. Silvestre, J.S., Tamarat, R., Ebrahimian, T.G., et al. (2003) Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ. Res. 93, 114–123.

    Article  CAS  PubMed  Google Scholar 

  59. 59. Kon, O.L., Sivakumar, S., Teoh, K.L., Lok, S.H., and Long, Y.C. (1999) Naked plasmid-mediated gene transfer to skeletal muscle ameliorates diabetes mellitus. J. Gene Med. 1, 186–194.

    Article  CAS  PubMed  Google Scholar 

  60. 60. Martinenghi, S., Cusella De Angelis, G., Biressi, S., et al. (2002) Human insulin production and amelioration of diabetes in mice by electrotransfer-enhanced plasmid DNA gene transfer to the skeletal muscle. Gene Ther. 9, 1429–1437.

    Article  CAS  PubMed  Google Scholar 

  61. 61. Croze, F. and Prud'homme, G.J. (2003) Gene therapy of streptozotocin-induced diabetes by intramuscular delivery of modified preproinsulin genes. J. Gene Med. 5, 425–437.

    Article  CAS  PubMed  Google Scholar 

  62. 62. Sun, W., Wang, L., Zhang, Z., Chen, M., and Wang, X. (2003) Intramuscular transfer of naked calcitonin gene-related peptide gene prevents autoimmune diabetes induced by multiple low-dose streptozotocin in C57BL mice. Eur. J. Immunol. 33, 233–242.

    Article  CAS  PubMed  Google Scholar 

  63. 63. Tavakoli, R., Gazdhar, A., Pierog, J., et al. (2006) Electroporation-mediated interleukin-10 overexpression in skeletal muscle reduces acute rejection in rat cardiac allografts. J. Gene Med. 8, 242–248.

    Article  CAS  PubMed  Google Scholar 

  64. 64. Nakano, A., Matsumori, A., Kawamoto, S., et al. (2001) Cytokine gene therapy for myocarditis by in vivo electroporation. Hum. Gene Ther. 12, 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  65. 65. Watanabe, K., Nakazawa, M., Fuse, K., et al. (2001) Protection against autoimmune myocarditis by gene transfer of interleukin-10 by electroporation. Circulation. 104, 1098–1100.

    Article  CAS  PubMed  Google Scholar 

  66. 66. Adachi, O., Nakano, A., Sato, O., et al. (2002) Gene transfer of Fc-fusion cytokine by in vivo electroporation: application to gene therapy for viral myocarditis. Gene Ther. 9, 577–583.

    Article  CAS  PubMed  Google Scholar 

  67. 67. Jiang, J., Yamato, E., and Miyazaki, J. (2003) Sustained expression of Fc-fusion cytokine following in vivo electroporation and mouse strain differences in expression levels. J. Biochem. (Tokyo). 133, 423–427.

    CAS  Google Scholar 

  68. 68. Mallat, Z., Besnard, S., Duriez, M., et al. (1999) Protective role of interleukin-10 in atherosclerosis. Circ. Res. 85, e17–e24.

    CAS  PubMed  Google Scholar 

  69. 69. Mallat, Z., Corbaz, A., Scoazec, A., et al. (2001) Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ. Res. 89, E41–E45.

    Article  CAS  PubMed  Google Scholar 

  70. 70. Hase, M., Tanaka, M., Yokota, M., and Yamada, Y. (2002) Reduction in the extent of atherosclerosis in apolipoprotein E-deficient mice induced by electroporation-mediated transfer of the human plasma platelet-activating factor acetylhydrolase gene into skeletal muscle. Prostaglandins Other Lipid Mediat. 70, 107–118.

    Article  CAS  PubMed  Google Scholar 

  71. 71. Saidenberg-Kermanac'h, N., Bessis, N., Deleuze, V., et al. (2003) Efficacy of interleukin-10 gene electrotransfer into skeletal muscle in mice with collagen-induced arthritis. J. Gene Med. 5, 164–171.

    Article  PubMed  Google Scholar 

  72. 72. Ho, S.H., Hahn, W., Lee, H.J., et al. (2004) Protection against collagen-induced arthritis by electrotransfer of an expression plasmid for the interleukin-4. Biochem. Biophys. Res. Commun. 321, 759–766.

    Article  CAS  PubMed  Google Scholar 

  73. 73. Jeong, J.G., Kim, J.M., Ho, S.H., Hahn, W., Yu, S.S., and Kim, S. (2004) Electrotransfer of human IL-1Ra into skeletal muscles reduces the incidence of murine collagen-induced arthritis. J. Gene Med. 6, 1125–1133.

    Article  CAS  PubMed  Google Scholar 

  74. 74. Olsen, N.J. and Stein, C.M. (2004) New drugs for rheumatoid arthritis. N. Engl. J. Med. 350, 2167–2179.

    Article  CAS  PubMed  Google Scholar 

  75. 75. Bloquel, C., Bessis, N., Boissier, M.C., Scherman, D., and Bigey, P. (2004) Gene therapy of collagen-induced arthritis by electrotransfer of human tumor necrosis factor-alpha soluble receptor I variants. Hum. Gene Ther. 15, 189–201.

    Article  CAS  PubMed  Google Scholar 

  76. 76. Kim, J.M., Ho, S.H., Hahn, W., et al. (2003) Electro-gene therapy of collagen-induced arthritis by using an expression plasmid for the soluble p75 tumor necrosis factor receptor-Fc fusion protein. Gene Ther. 10, 1216–1224.

    Article  CAS  PubMed  Google Scholar 

  77. 77. Bloquel, C., Bejjani, R., Bigey, P., et al. (2006) Plasmid electrotransfer of eye ciliary muscle: principles and therapeutic efficacy using hTNF-alpha soluble receptor in uveitis. FASEB J. 20, 389–391.

    CAS  PubMed  Google Scholar 

  78. 78. Lucas, M.L. and Heller, R. (2001) Immunomodulation by electrically enhanced delivery of plasmid DNA encoding IL-12 to murine skeletal muscle. Mol. Ther. 3, 47–53.

    Article  CAS  PubMed  Google Scholar 

  79. 79. Lee, S.C., Wu, C.J., Wu, P.Y., Huang, Y.L., Wu, C.W., and Tao, M.H. (2003) Inhibition of established subcutaneous and metastatic murine tumors by intramuscular electroporation of the interleukin-12 gene. J. Biomed. Sci. 10, 73–86.

    Article  CAS  PubMed  Google Scholar 

  80. 80. Li, S., Zhang, L., Torrero, M., Cannon, M., and Barret, R. (2005) Administration route- and immune cell activation-dependent tumor eradication by IL12 electrotransfer. Mol. Ther. 12, 942–949.

    Article  CAS  PubMed  Google Scholar 

  81. 81. Li, S., Zhang, X., Xia, X. et al. (2001) Intramuscular electroporation delivery of IFN-alpha gene therapy for inhibition of tumor growth located at a distant site. Gene Ther. 8, 400–407.

    Article  CAS  PubMed  Google Scholar 

  82. 82. Zhang, G.H., Tan, X.F., Shen, D., et al. (2003) Gene expression and antitumor effect following im electroporation delivery of human interferon alpha 2 gene. Acta. Pharmacol. Sin. 24, 891–896.

    CAS  PubMed  Google Scholar 

  83. 83. Celiker, M.Y., Wang, M., Atsidaftos, E., et al. (2001) Inhibition of Wilms' tumor growth by intramuscular administration of tissue inhibitor of metalloproteinases-4 plasmid DNA. Oncogene. 20, 4337–4343.

    Article  CAS  PubMed  Google Scholar 

  84. 84. Cichon, T., Jamrozy, L., Glogowska, J., Missol-Kolka, E., and Szala, S. (2002) Electrotransfer of gene encoding endostatin into normal and neoplastic mouse tissues: inhibition of primary tumor growth and metastatic spread. Cancer Gene Ther. 9, 771–777.

    Article  CAS  PubMed  Google Scholar 

  85. 85. Bossard, C., Van den Berghe, L., Laurell, H., et al. (2004) Antiangiogenic properties of fibstatin, an extracellular FGF-2-binding polypeptide. Cancer Res. 64, 7507–7512.

    Article  CAS  PubMed  Google Scholar 

  86. 86. Ivanov, M.A., Lamrihi, B., Szyf, M., Scherman, D., and Bigey, P. (2003) Enhanced antitumor activity of a combination of MBD2-antisense electrotransfer gene therapy and bleomycin electrochemotherapy. J. Gene Med. 5, 893–899.

    Article  CAS  PubMed  Google Scholar 

  87. 87. Pelegrin, M., Gros, L., Dreja, H., and Piechaczyk, M. (2004) Monoclonal antibody-based genetic immunotherapy. Curr. Gene Ther. 4, 347–356.

    CAS  PubMed  Google Scholar 

  88. 88. Perez, N., Bigey, P., Scherman, D., Danos, O., Piechaczyk, M., and Pelegrin, M. (2004) Regulatable systemic production of monoclonal antibodies by in vivo muscle electroporation. Genet. Vaccines Ther. 2, 2.

    Article  PubMed  Google Scholar 

  89. Christian H. Ottensmeier et al. (2006) 4th international workshop on DNA vaccines, Trest. Complete information about this clinical trial can be found on the Internet site: http://www.inovio.com/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press

About this protocol

Cite this protocol

Trollet, C., Scherman, D., Bigey, P. (2008). Delivery of DNA into Muscle for Treating Systemic Diseases: Advantages and Challenges. In: Li, S. (eds) Electroporation Protocols. Methods in Molecular Biology™, vol 423. Humana Press. https://doi.org/10.1007/978-1-59745-194-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-194-9_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-877-5

  • Online ISBN: 978-1-59745-194-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics