Skip to main content

In vitro RNA Cleavage Assay for Argonaute-Family Proteins

  • Protocol
RNAi

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 442))

Summary

Recent studies have revealed that Argonaute proteins are crucial components of the RNA-induced silencing complexes (RISCs) that direct both small interfering RNA (siRNA)- and microRNA (miRNA)-mediated gene silencing. Full complementarity between the small RNA and its target messenger RNA (mRNA) results in RISC-mediated cleavage (“Slicing”) of the target mRNA. A subset of Argonaute proteins directly contributes to the target cleavage (“Slicer”) activity of the RISC. We describe (in vitro) Slicer assays using endogenous Argonaute protein immunopurified from animal cells and recombinant Argonaute protein produced in and purified from Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomari, Y., and Zamore, P. D. (2005). Perspective: Machines for RNAi. Genes Dev. 19, 517–529.

    Article  CAS  PubMed  Google Scholar 

  2. Sontheimer, E. J. (2005). Assembly and function of RNA silencing complexes. Nat. Rev. Mol. Cell Biol. 6, 127–138.

    Article  CAS  PubMed  Google Scholar 

  3. Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  CAS  PubMed  Google Scholar 

  4. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200.

    Article  CAS  PubMed  Google Scholar 

  5. Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk, R. H. (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659.

    Article  CAS  PubMed  Google Scholar 

  6. Knight, S. W., and Bass, B. L. (2001). A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 2932269–2271.

    Article  CAS  PubMed  Google Scholar 

  7. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R., and Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

    Article  CAS  PubMed  Google Scholar 

  8. Hutvagner, G., and Zamore, P. D. (2002). RNAi: Nature abhors a double-strand. Curr. Opin. Genet. Dev. 12, 225–232.

    Article  CAS  PubMed  Google Scholar 

  9. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574.

    Article  CAS  PubMed  Google Scholar 

  10. Nykanen, A., Haley, B., and Zamore, P. D. (2001). ATP requirements and small interfering RNA structure in the RNA interference pathway.Cell 107, 309–321.

    Article  CAS  PubMed  Google Scholar 

  11. Hutvagner, G., and Zamore, P. D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060.

    Article  CAS  PubMed  Google Scholar 

  12. Ambros, W. (2004). The functions of animal microRNAs. Nature 431, 350–355.

    Article  CAS  PubMed  Google Scholar 

  13. Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  14. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

    Article  CAS  PubMed  Google Scholar 

  15. Olsen, P. H., and Ambros, V. (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216 671–680.

    Article  CAS  PubMed  Google Scholar 

  16. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., and Ruvkun, G. (2000). The 21-nucleotide hlet-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906.

    Article  CAS  PubMed  Google Scholar 

  17. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003). Bantam encodes a developmentally regulated microRNA that controls cell proli-feration and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36.

    Article  CAS  PubMed  Google Scholar 

  18. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science 294, 853–858.

    Article  CAS  PubMed  Google Scholar 

  19. Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294 858–862.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, R. C., and Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864.

    Article  CAS  PubMed  Google Scholar 

  21. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., and Bartel, D. P. (2002). MicroRNAs in plants. Genes Dev. 16, 1616–1629.

    Article  CAS  PubMed  Google Scholar 

  22. Song, J.-J., Smith, S. K., Hannon, G. J., and Joshua-Tor, L. (2004). Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, J., Carmell, M. A., Rivas, F. V., et al. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441.

    Article  CAS  PubMed  Google Scholar 

  24. Rivas, F. V., Tolia, N. H., Song, J.-J., et al. (2005). Purified Argonaute2 and an siRNA form recombinant human RISC. Nat. Struct. Mol. Biol. 12, 340–349.

    Article  CAS  PubMed  Google Scholar 

  25. Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197.

    Article  CAS  PubMed  Google Scholar 

  26. Sasaki, T., Shiohama, A., Minoshima, S., and Shimizu, N. (2003).Identification of eight members of the Argonaute family in the human genome. Genomics 82, 323–330.

    Article  CAS  PubMed  Google Scholar 

  27. Williams, R. W., and Rubin, G. M. (2002). ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc. Natl. Acad. Sci. USA 99, 6889–6894.

    Google Scholar 

  28. Okamura, K., Ishizuka, A., Siomi, H., and Siomi, M. C. (2004). Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666.

    Article  CAS  PubMed  Google Scholar 

  29. Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H., and Siomi, M. C. (2005). Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837–2848.

    Article  CAS  PubMed  Google Scholar 

  30. Zamore, P. D., Tuschl, T., Sharp, P. A., and Bartel, D. P. (2000). RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33.

    Article  CAS  PubMed  Google Scholar 

  31. Tomari, Y., Matranga, C., Haley, B., Martinez, N., and Zamore P. D. (2004). A protein sensor for siRNA asymmetry. Science 306, 1377–1380.

    Article  CAS  PubMed  Google Scholar 

  32. Kiriakidou, M., Nelson, P., Lamprinaki, S., Sharma, A., and Mourelatos, Z. (2005). Detection of microRNAs and assays to monitor microRNA activities in vivo and in vitro. Meth. Mol. Biol. 309, 295–310.

    CAS  Google Scholar 

  33. Tolla, N. H., and Joshua-Tor, L. (2006). Strategies for protein coexpression in Escherichia coli. Nat. Meth. 3, 55–64.

    Article  Google Scholar 

  34. Dorner, S., Lum, L., Kim, M., Paro, R., Beachy, P. A., and Green, R. (2006). A genomewide screen for components of the RNAi pathway in Proc. Natl. Acad. Sci. USA 103, 11880–11885.

    Google Scholar 

  35. Hall, T. M. T. (2005). Structure and function of Argonaute proteins. Structure 13, 1403–1408.

    Article  CAS  PubMed  Google Scholar 

  36. Martinez, J., and Tuschl, T. (2004). RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975–980.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

K. M. is a research fellow supported by the Japan Society for the Promotion of Science (JSPS). This work was supported by grants to M. C. S. and H. S. from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the JSPS, and the New Energy and Industrial Technology Development Organization. M.C.S. is also supported by CREST from Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Miyoshi, K., Uejima, H., Nagami-Okada, T., Siomi, H., Siomi, M.C. (2008). In vitro RNA Cleavage Assay for Argonaute-Family Proteins. In: Barik, S. (eds) RNAi. Methods in Molecular Biology™, vol 442. Humana Press. https://doi.org/10.1007/978-1-59745-191-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-191-8_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-874-4

  • Online ISBN: 978-1-59745-191-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics