In Vitro and In Vivo Assays for Studying Histone Ubiquitination and Deubiquitination

  • Ling Zhai
  • Heui-Yun Joo
  • Hengbin Wang
Part of the Methods in Molecular Biology book series (MIMB, volume 523)


Posttranslational histone modifications play important roles in regulating chromatin structure and function (Martin and Zhang, Nat Rev Mol Cell Biol 6:838–849, 2005; Jenuwein and Allis, Science 293:1074–1080, 2001). One example of such modifications is histone ubiquitination, which occurs predominately on H2A and H2B. Recent studies have highlighted important regulatory roles of H2A ubiquitination in Polycomb group proteins-mediated gene silencing (Wang et al., Nature 431:873–878, 2004; Joo et al., Nature 449:1068–1072, 2007) and H2B ubiquitination in transcription, H3 methylation, and DNA methylation (Zhang, Genes Dev 17:2733–2740, 2003; Sun and Allis, Nature 418:104–108, 2002; Sridhar et al., Nature 447:735–738, 2007). Here we describe methods for in vitro histone ubiquitination and deubiquitination assays. We also describe approaches to investigate the in vivo function of a putative histone ubiquitin ligase and deubiquitinase. These experimental procedures are largely based on our studies in mammalian cells. These methods should provide useful tools for studying this bulky histone modification.

Key words

Chromatin histone ubiquitination histone deubiquitination in vitro assay and in vivo assay 


  1. 1.
    Martin, C., and Zhang, Y. 2005. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849.PubMedCrossRefGoogle Scholar
  2. 2.
    Jenuwein, T., and Allis, C.D. 2001. Translating the histone code. Science 293:1074–1080.PubMedCrossRefGoogle Scholar
  3. 3.
    Strahl, B., and Allis, C. 2000. The language of covalent histone modifications. Nature 403:41–45.PubMedCrossRefGoogle Scholar
  4. 4.
    Turner, B. 2000. Histone acetylation and an epigenetic code. Bioessays 22: 836–845.PubMedCrossRefGoogle Scholar
  5. 5.
    Peterson, C.L., and Laniel, M.-A. 2004. Histones and histone modifications. Curr Biol 14:R546–R551.PubMedCrossRefGoogle Scholar
  6. 6.
    Osley, M.A. 2004. H2B ubiquitylation: the end is in sight. BBA-Gene Struct Expr 1677:74–78.Google Scholar
  7. 7.
    Jason, L., Moore, S., Lewis, J., Lindsey, G., and Ausio, J. 2002. Histone ubiquitination: a tagging tail unfolds? Bioessays 24:166–174.PubMedCrossRefGoogle Scholar
  8. 8.
    Vassilev, A., Rasmussen, H., Christensen, E., Nielsen, S., and Celis, J. 1995. The levels of ubiquitinated histone H2A are highly upregulated in transformed human cells: partial colocalization of uH2A clusters and PCNA/cyclin foci in a fraction of cells in S-phase. J Cell Sci 108:1205–1215.PubMedGoogle Scholar
  9. 9.
    Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R.S., and Zhang, Y. 2004. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–878.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang, H., Zhai, L., Xu, J., Joo, H.-Y., Jackson, S., Erdjument-Bromage, H., Tempst, P., Xiong, Y., and Zhang, Y. 2006. Histone H3 and H4 Ubiquitylation by the CUL4-DDB-ROC1 Ubiquitin Ligase Facilitates Cellular Response to DNA Damage. Mol Cell 22:383–394.PubMedCrossRefGoogle Scholar
  11. 11.
    Kao, C.-F., and Osley, M.A. 2003. In vivo assays to study histone ubiquitylation. Methods 31:59–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Shilatifard, A. 2006. Chromatin modifications by methylations and ubiquitinations: Implications in the Regulation of Gene Expression. Annu Rev Biochem 75:243–269.PubMedCrossRefGoogle Scholar
  13. 13.
    Fleming, A., and Osley, M.A. 2004. Silence of the rings. Cell 119:449–451.PubMedCrossRefGoogle Scholar
  14. 14.
    Robzyk, K., Recht, J., and Osley, M.A. 2000. Rad6-dependent ubiquitination of histone H2B in yeast. Science 287:501–504.PubMedCrossRefGoogle Scholar
  15. 15.
    Hwang, W.W., Venkatasubrahmanyam, S., Ianculescu, A.G., Tong, A., Boone, C., and Madhani, H.D. 2003. A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 11:261–266.PubMedCrossRefGoogle Scholar
  16. 16.
    Wood, A., Krogan, N.J., Dover, J., Schneider, J., Heidt, J., Boateng, M.A., Dean, K., Golshani, A., Zhang, Y., and Greenblatt, J.F. 2003. Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell 11:267–274.PubMedCrossRefGoogle Scholar
  17. 17.
    Sun, Z.-W., and Allis, C.D. 2002. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418:104–108.PubMedCrossRefGoogle Scholar
  18. 18.
    Briggs, S.D., Xiao, T., Sun, Z.-W., Caldwell, J.A., Shabanowitz, J., Hunt, D.F., Allis, C.D., and Strahl, B.D. 2002. Gene silencing: Trans-histone regulatory pathway in chromatin. Nature 418:498.PubMedCrossRefGoogle Scholar
  19. 19.
    Dover, J., Schneider, J., Tawiah-Boateng, M.A., Wood, A., Dean, K., Johnston, M., and Shilatifard, A. 2002. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 277:28368–28371.PubMedCrossRefGoogle Scholar
  20. 20.
    Ng, H.H., Xu, R.-M., Zhang, Y., and Struhl, K. 2002. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem 277:34655–34657.PubMedCrossRefGoogle Scholar
  21. 21.
    Sridhar, V.V., Kapoor, A., Zhang, K., Zhu, J., Zhou, T., Hasegawa, P.M., Bressan, R.A., and Zhu, J.-K. 2007. Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 447:735–738.PubMedCrossRefGoogle Scholar
  22. 22.
    de Napoles, M., Mermoud, J.E., Wakao, R., Tang, Y.A., Endoh, M., Appanah, R., Nesterova, T.B., Silva, J., Otte, A.P., and Vidal, M. 2004. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7:663–676.PubMedCrossRefGoogle Scholar
  23. 23.
    Pham, A.-D., and Sauer, F. 2000. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in drosophila. Science 289:2357–2360.PubMedCrossRefGoogle Scholar
  24. 24.
    Pickart, C.M. 2001. Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533.PubMedCrossRefGoogle Scholar
  25. 25.
    Pickart, C.M. 2004. Back to the future with ubiquitin. Cell 116:181–190.PubMedCrossRefGoogle Scholar
  26. 26.
    Wilkinson, K. 1997. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J 11:1245–1256.PubMedGoogle Scholar
  27. 27.
    Wilkinson, K.D. 2000. Ubiquitination and deubiquitination: Targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol 11:141–148.PubMedCrossRefGoogle Scholar
  28. 28.
    Daniel, J.A., Torok, M.S., Sun, Z.-W., Schieltz, D., Allis, C.D., Yates, J.R., III, and Grant, P.A. 2004. Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J Biol Chem 279:1867–1871.PubMedCrossRefGoogle Scholar
  29. 29.
    Henry, K.W., Wyce, A., Lo, W.-S., Duggan, L.J., Emre, N.C.T., Kao, C.-F., Pillus, L., Shilatifard, A., Osley, M.A., and Berger, S.L. 2003. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev 17:2648–2663.PubMedCrossRefGoogle Scholar
  30. 30.
    Gardner, R.G., Nelson, Z.W., and Gottschling, D.E. 2005. Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B: distinct roles in telomeric silencing and general chromatin. Mol Cell Biol 25:6123–6139.PubMedCrossRefGoogle Scholar
  31. 31.
    Emre, N.C.T., Ingvarsdottir, K., Wyce, A., Wood, A., Krogan, N.J., Henry, K.W., Li, K., Marmorstein, R., Greenblatt, J.F., Shilatifard, A., et al. 2005. Maintenance of low histone ubiquitylation by Ubp10 correlates with telomere-proximal sir2 association and gene silencing. Mol Cell 17:585–594.PubMedCrossRefGoogle Scholar
  32. 32.
    Fang, J., Wang, H., and Zhang, Y. 2004. Purification of histone methyltransferases from HeLa cells. Methods Enzymol 377:213–226.PubMedCrossRefGoogle Scholar
  33. 33.
    Luger, K., TJ, R., and Richmond, T.J. 1999. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol 304:3–19.PubMedCrossRefGoogle Scholar
  34. 34.
    Joo, H.-Y., Zhai, L., Yang, C., Nie, S., Erdjument-Bromage, H., Tempst, P., Chang, C., and Wang, H. 2007. Regulation of cell cycle progression and gene expression by H2A deubiquitination. Nature 449:1068–1072.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang, Y. 2003. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 17:2733–2740.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ling Zhai
    • 1
  • Heui-Yun Joo
    • 1
  • Hengbin Wang
    • 1
  1. 1.Department of Biochemistry and Molecular GeneticsUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations