Skip to main content

Biochemical Analysis of Arginine Methylation in Transcription

  • Protocol
  • First Online:
Chromatin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 523))

Abstract

Protein arginine methylation has emerged as an important mechanism for regulating the functions of proteins involved in diverse aspects of gene regulation such as transcriptional activation and repression, mRNA processing and nuclear-cytoplasmic shuttling. This modification is catalyzed by the PRMT family of enzymes which utilize intracellular S-adenosyl methionine as a cofactor to dimethylate-specific arginines found within many target proteins.

The establishment of in vitro biochemical assays as well as the development of modification-specific antibodies, and more recently mass spectrometry, have increased our understanding of the mechanism of catalysis of the PRMT family of enzymes. In the following discussion, we present some of the more commonly used in vivo and in vitro techniques which can be utilized to study the mechanism of arginine methylation and its role in transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lake, A.N. and M.T. Bedford. 2007. Protein methylation and DNA repair. Mutat Res 618:91–101.

    Article  PubMed  CAS  Google Scholar 

  2. Bedford, M.T. and S. Richard. 2005. Arginine methylation an emerging regulator of protein function. Mol Cell 18:263–272.

    Article  PubMed  CAS  Google Scholar 

  3. Lee, Y.H., S.A. Coonrod, W.L. Kraus, M.A. Jelinek and M.R. Stallcup. 2005. Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci U S A 102:3611–3616.

    Google Scholar 

  4. Chen, D., H. Ma, H. Hong, S.S. Koh, S.M. Huang, B.T. Schurter, D.W. Aswad and M.R. Stallcup. 1999. Regulation of transcription by a protein methyltransferase. Science 284:2174–2177.

    Article  PubMed  CAS  Google Scholar 

  5. Koh, S.S., D. Chen, Y.H. Lee and M.R. Stallcup. 2001. Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem 276:1089–1098.

    Article  PubMed  CAS  Google Scholar 

  6. Ma, H., C.T. Baumann, H. Li, B.D. Strahl, R. Rice, M.A. Jelinek, D.W. Aswad, C.D. Allis, et al. 2001. Hormone-dependent, CARM1-directed, arginine-specific methylation of histone H3 on a steroid-regulated promoter. Curr Biol 11:1981–1985.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, D., S.M. Huang and M.R. Stallcup. 2000. Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem 275:40810–40816.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, S.L., K.A. Loffler, D. Chen, M.R. Stallcup and G.E. Muscat. 2002. The coactivator-associated arginine methyltransferase is necessary for muscle differentiation: CARM1 coactivates myocyte enhancer factor-2. J Biol Chem 277:4324–4333.

    Article  PubMed  CAS  Google Scholar 

  9. Schurter, B.T., S.S. Koh, D. Chen, G.J. Bunick, J.M. Harp, B.L. Hanson, A. Henschen-Edman, D.R. Mackay, et al. 2001. Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40:5747–5756.

    Article  PubMed  CAS  Google Scholar 

  10. Xu, W., H. Chen, K. Du, H. Asahara, M. Tini, B.M. Emerson, M. Montminy and R.M. Evans. 2001. A transcriptional switch mediated by cofactor methylation. Science 294:2507–2511.

    Article  PubMed  CAS  Google Scholar 

  11. Chevillard-Briet, M., D. Trouche and L. Vandel. 2002. Control of CBP co-activating activity by arginine methylation. Embo J 21:5457–5466.

    Article  PubMed  CAS  Google Scholar 

  12. Naeem, H., D. Cheng, Q. Zhao, C. Underhill, M. Tini, M.T. Bedford and J. Torchia. 2007. The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol Cell Biol 27:120–134.

    Article  PubMed  CAS  Google Scholar 

  13. Boisvert, F.M., A. Rhie, S. Richard and A.J. Doherty. 2005. The GAR motif of 53BP1 is arginine methylated by PRMT1 and is necessary for 53BP1 DNA binding activity. Cell Cycle 4:1834–1841.

    Article  PubMed  CAS  Google Scholar 

  14. Boisvert, F.M., M.J. Hendzel, J.Y. Masson and S. Richard. 2005. Methylation of MRE11 regulates its nuclear compartmentalization. Cell Cycle 4:981–989.

    Article  PubMed  CAS  Google Scholar 

  15. Boisvert, F.M., J. Cote, M.C. Boulanger and S. Richard. 2003. A proteomic analysis of arginine-methylated protein complexes. Mol Cell Proteomics 2:1319–1330.

    Article  PubMed  CAS  Google Scholar 

  16. Cheng, D., J. Cote, S. Shaaban and M.T. Bedford. 2007. The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol Cell 25:71–83.

    Article  PubMed  Google Scholar 

  17. Liu, Q. and G. Dreyfuss. 1995. In vivo and in vitro arginine methylation of RNA-binding proteins. Mol Cell Biol 15:2800–2808.

    PubMed  CAS  Google Scholar 

  18. Zou, Y. and Y. Wang. 2005. Tandem mass spectrometry for the examination of the posttranslational modifications of high-mobility group A1 proteins: symmetric and asymmetric dimethylation of Arg25 in HMGA1a protein. Biochemistry 44:6293–6301.

    Article  PubMed  CAS  Google Scholar 

  19. Kim, S., B.M. Merrill, R. Rajpurohit, A. Kumar, K.L. Stone, V.V. Papov, J.M. Schneiders, W. Szer, et al. 1997. Identification of N(G)-methylarginine residues in human heterogeneous RNP protein A1: Phe/Gly-Gly-Gly-Arg-Gly-Gly-Gly/Phe is a preferred recognition motif. Biochemistry 36:5185–5192.

    Article  PubMed  CAS  Google Scholar 

  20. Desrosiers, R and R.M. Tanguay, 1988. Methylation of Drosophila histones at proline, lysine, and arginine residues during heat shock. J Biol Chem. 263:4686–92.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tini, M., Naeem, H., Torchia, J. (2009). Biochemical Analysis of Arginine Methylation in Transcription. In: Chellappan, S. (eds) Chromatin Protocols. Methods in Molecular Biology, vol 523. Humana Press. https://doi.org/10.1007/978-1-59745-190-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-190-1_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-873-7

  • Online ISBN: 978-1-59745-190-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics