Advertisement

Investigation of Genomic Methylation Status Using Methylation-Specific and Bisulfite Sequencing Polymerase Chain Reaction

  • Melanie Carless
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 523)

Abstract

Epigenetic modification plays a central role in the regulation of gene expression and therefore in the development of disease states. In particular, genomic methylation of cytosines within CpG dinucleotides is crucial to development, gene silencing and chromosome inactivation. Importantly, aberrant methylation profiles of various genes are associated with cancer and potentially autoimmune disease, brain-related disease, diabetes and heart disease. Various methods are available for the detection and quantification of methylation in a given sample. Most of these methods rely upon bisulfite conversion of DNA, which converts unmethylated cytosines to uracil, while methylated cytosines remain as cytosines. Methylation-specific amplification of DNA can be used to detect methylation at one or more (typically up to about 4) CpG sites by using primers specific to either methylated or unmethylated DNA. Alternatively, amplification of both methylated and unmethylated DNA followed by sequencing can be used to detect methylation status at multiple CpG sites. The following chapter provides protocols for bisulfite conversion of DNA, methylation-specific PCR and bisulfite sequencing PCR.

Key words

Methylation bisulfite PCR MSP BSP 

References

  1. 1.
    Park, S. Y., Kim, B. H., Kim, J. H., Cho, N. Y., Choi, M., Yu, E. J., Lee, S., and Kang, G. H. (2007) Methylation profiles of CpG island loci in major types of human cancers. J Korean Med Sci 22, 311–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Ducasse, M., and Brown, M. A. (2006) Epigenetic aberrations and cancer. Mol Cancer 5, 60.PubMedCrossRefGoogle Scholar
  3. 3.
    Moss, T. J., and Wallrath, L. L. (2007) Connections between epigenetic gene silencing and human disease. Mutat Res 618, 163–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson, A. S., Power, B. E., and Molloy, P. L. (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775, 138–62.PubMedGoogle Scholar
  5. 5.
    Abdolmaleky, H. M., Cheng, K. H., Faraone, S. V., Wilcox, M., Glatt, S. J., Gao, F., Smith, C. L., Shafa, R., Aeali, B., Carnevale, J., Pan, H., Papageorgis, P., Ponte, J. F., Sivaraman, V., Tsuang, M. T., and Thiagalingam, S. (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 15, 3132–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Kim, J., Kim, J. Y., Song, K. S., Lee, Y. H., Seo, J. S., Jelinek, J., Goldschmidt-Clermont, P. J., and Issa, J. P. (2007) Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. Biochim Biophys Acta 1772, 72–80.PubMedGoogle Scholar
  7. 7.
    Maier, S., and Olek, A. (2002) Diabetes: a candidate disease for efficient DNA methylation profiling. J Nutr 132, 2440S–43S.PubMedGoogle Scholar
  8. 8.
    Munson, K., Clark, J., Lamparska-Kupsik, K., and Smith, S. S. (2007) Recovery of bisulfite-converted genomic sequences in the methylation-sensitive QPCR. Nucleic Acids Res 35, 2893–903.PubMedCrossRefGoogle Scholar
  9. 9.
    Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., Molloy, P. L., and Paul, C. L. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89, 1827–31.Google Scholar
  10. 10.
    Brena, R. M., Huang, T. H., and Plass, C. (2006) Quantitative assessment of DNA methylation: Potential applications for disease diagnosis, classification, and prognosis in clinical settings. J Mol Med 84, 365–77.PubMedCrossRefGoogle Scholar
  11. 11.
    Pattyn, F., Hoebeeck, J., Robbrecht, P., Michels, E., De Paepe, A., Bottu, G., Coornaert, D., Herzog, R., Speleman, F., and Vandesompele, J. (2006) methBLAST and methPrimerDB: web-tools for PCR based methylation analysis. BMC Bioinformatics 7, 496.PubMedCrossRefGoogle Scholar
  12. 12.
    Li, L. C., and Dahiya, R. (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Marshall, O. J. (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20, 2471–2.PubMedCrossRefGoogle Scholar
  14. 14.
    Tusnady, G. E., Simon, I., Varadi, A., and Aranyi, T. (2005) BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Res 33, e9.PubMedCrossRefGoogle Scholar
  15. 15.
    Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D., and Baylin, S. B. (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93, 9821–6.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Melanie Carless
    • 1
  1. 1.Department of GeneticsSouthwest Foundation for Biomedical ResearchSan AntonioUSA

Personalised recommendations