Skip to main content

In Vitro Replication Assay with Mammalian Cell Extracts

  • Protocol
  • First Online:
Chromatin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 523))

Abstract

Regulatory mechanisms for DNA replication are crucial to the control of the cell cycle in eukaryotic cells. One of the widely used assays to understand the complex mammalian replication system is the cell-free in vitro replication assay (IVRA). IVRA can provide a snapshot of the regulatory mechanisms controlling replication in higher eukaryotes by using a single plasmid, pEPI-1. This chapter outlines the general strategies and protocols used to perform IVRA to study the differential recruitment of replication factors either independently or in combination, based on the experience in studying the role of prohibitin in replication as well as other published protocols. This method can be employed to identify not only proteins that assist replication but also proteins that inhibit replication of mammalian genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dean, F. B., Bullock, P., Murakami, Y., Wobbe, C. R., Weissbach, L. & Hurwitz, J. (1987) Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication, Proc Natl Acad Sci U S A. 84, 16–20.

    Google Scholar 

  2. Simmons, D. T. (2000) SV40 large T antigen functions in DNA replication and transformation, Adv Virus Res. 55, 75–134.

    Article  PubMed  CAS  Google Scholar 

  3. Coverley, D. & Laskey, R. A. (1994) Regulation of eukaryotic DNA replication, Annu Rev Biochem. 63, 745–76.

    Article  PubMed  CAS  Google Scholar 

  4. Bell, S. P. & Dutta, A. (2002) DNA replication in eukaryotic cells, Annu Rev Biochem. 71, 333–74.

    Article  PubMed  CAS  Google Scholar 

  5. Blow, J. J. & Hodgson, B. (2002) Replication licensing – defining the proliferative state?, Trends Cell Biol. 12, 72–8.

    Article  PubMed  CAS  Google Scholar 

  6. Alexandrow, M. G., Ritzi, M., Pemov, A. & Hamlin, J. L. (2002) A potential role for mini-chromosome maintenance (MCM) proteins in initiation at the dihydrofolate reductase replication origin, J Biol Chem. 277, 2702–8.

    Article  PubMed  CAS  Google Scholar 

  7. Aparicio, O. M., Weinstein, D. M. & Bell, S. P. (1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase, Cell. 91, 59–69.

    Article  PubMed  CAS  Google Scholar 

  8. Labib, K., Tercero, J. A. & Diffley, J. F. (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression, Science. 288, 1643–7.

    Article  PubMed  CAS  Google Scholar 

  9. Schaarschmidt, D., Ladenburger, E. M., Keller, C. & Knippers, R. (2002) Human Mcm proteins at a replication origin during the G1 to S phase transition, Nucleic Acids Res. 30, 4176–85.

    Article  PubMed  CAS  Google Scholar 

  10. You, Z., Komamura, Y. & Ishimi, Y. (1999) Biochemical analysis of the intrinsic Mcm4-Mcm6-mcm7 DNA helicase activity, Mol Cell Biol. 19, 8003–15.

    PubMed  CAS  Google Scholar 

  11. DePamphilis, M. L. (1999) Replication origins in metazoan chromosomes: fact or fiction? Bioessays. 21, 5–16.

    Article  PubMed  CAS  Google Scholar 

  12. Bell, S. P. & Stillman, B. (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex, Nature. 357, 128–34.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, D. G. & Bell, S. P. (1997) Architecture of the yeast origin recognition complex bound to origins of DNA replication, Mol Cell Biol. 17, 7159–68.

    PubMed  CAS  Google Scholar 

  14. Mechali, M. (2001) DNA replication origins: from sequence specificity to epigenetics, Nat Rev Genet. 2, 640–5.

    Article  PubMed  CAS  Google Scholar 

  15. McWhinney, C. & Leffak, M. (1990) Autonomous replication of a DNA fragment containing the chromosomal replication origin of the human c-myc gene, Nucleic Acids Res. 18, 1233–42.

    Article  PubMed  CAS  Google Scholar 

  16. Price, G. B., Allarakhia, M., Cossons, N., Nielsen, T., Diaz-Perez, M., Friedlander, P., Tao, L. & Zannis-Hadjopoulos, M. (2003) Identification of a cis-element that determines autonomous DNA replication in eukaryotic cells, J Biol Chem. 278, 19649–59.

    Article  PubMed  CAS  Google Scholar 

  17. Bode, J., Kohwi, Y., Dickinson, L., Joh, T., Klehr, D., Mielke, C. & Kohwi-Shigematsu, T. (1992) Biological significance of unwinding capability of nuclear matrix-associating DNAs, Science. 255, 195–7.

    Article  PubMed  CAS  Google Scholar 

  18. Stehle, I. M., Scinteie, M. F., Baiker, A., Jenke, A. C. & Lipps, H. J. (2003) Exploiting a minimal system to study the epigenetic control of DNA replication: the interplay between transcription and replication, Chromosome Res. 11, 413–21.

    Article  PubMed  CAS  Google Scholar 

  19. Piechaczek, C., Fetzer, C., Baiker, A., Bode, J. & Lipps, H. J. (1999) A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells, Nucleic Acids Res. 27, 426–8.

    Article  PubMed  CAS  Google Scholar 

  20. Schaarschmidt, D., Baltin, J., Stehle, I. M., Lipps, H. J. & Knippers, R. (2004) An episomal mammalian replicon: sequence-independent binding of the origin recognition complex, Embo J. 23, 191–201.

    Article  PubMed  CAS  Google Scholar 

  21. Baiker, A., Maercker, C., Piechaczek, C., Schmidt, S. B., Bode, J., Benham, C. & Lipps, H. J. (2000) Mitotic stability of an episomal vector containing a human scaffold/matrix-attached region is provided by association with nuclear matrix, Nat Cell Biol. 2, 182–4.

    Article  PubMed  CAS  Google Scholar 

  22. Jenke, B. H., Fetzer, C. P., Stehle, I. M., Jonsson, F., Fackelmayer, F. O., Conradt, H., Bode, J. & Lipps, H. J. (2002) An episomally replicating vector binds to the nuclear matrix protein SAF-A in vivo, EMBO Rep. 3, 349–54.

    Article  PubMed  CAS  Google Scholar 

  23. Gilbert, D. M., Miyazawa, H. & DePamphilis, M. L. (1995) Site-specific initiation of DNA replication in Xenopus egg extract requires nuclear structure, Mol Cell Biol. 15, 2942–54.

    PubMed  CAS  Google Scholar 

  24. Hyrien, O. & Mechali, M. (1992) Plasmid replication in Xenopus eggs and egg extracts: a 2D gel electrophoretic analysis, Nucleic Acids Res. 20, 1463–9.

    Article  PubMed  CAS  Google Scholar 

  25. Mahbubani, H. M., Paull, T., Elder, J. K. & Blow, J. J. (1992) DNA replication initiates at multiple sites on plasmid DNA in Xenopus egg extracts, Nucleic Acids Res. 20, 1457–62.

    Article  PubMed  CAS  Google Scholar 

  26. Newport, J. (1987) Nuclear reconstitution in vitro: stages of assembly around protein-free DNA, Cell. 48, 205–17.

    Article  PubMed  CAS  Google Scholar 

  27. Newport, J. & Spann, T. (1987) Disassembly of the nucleus in mitotic extracts: membrane vesicularization, lamin disassembly, and chromosome condensation are independent processes, Cell. 48, 219–30.

    Article  PubMed  CAS  Google Scholar 

  28. Maiorano, D., Cuvier, O., Danis, E. & Mechali, M. (2005) MCM8 is an MCM2-7-related protein that functions as a DNA helicase during replication elongation and not initiation, Cell. 120, 315–28.

    Article  PubMed  CAS  Google Scholar 

  29. Maiorano, D., Moreau, J. & Mechali, M. (2000) XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis, Nature. 404, 622–5.

    Article  PubMed  CAS  Google Scholar 

  30. Alexiadis, V., Halmer, L. & Gruss, C. (1997) Influence of core histone acetylation on SV40 minichromosome replication in vitro, Chromosoma. 105, 324–31.

    Article  PubMed  CAS  Google Scholar 

  31. Baltin, J., Leist, S., Odronitz, F., Wollscheid, H. P., Baack, M., Kapitza, T., Schaarschmidt, D. & Knippers, R. (2006) 32. DNA replication in protein extracts from human cells requires ORC and Mcm proteins, J Biol Chem. 281, 12428–35.

    Article  PubMed  CAS  Google Scholar 

  32. Hirt, B. (1967) Selective extraction of polyoma DNA from infected mouse cell cultures, J Mol Biol. 26, 365–9.

    Article  PubMed  CAS  Google Scholar 

  33. Ziegler, K., Bui, T., Frisque, R. J., Grandinetti, A. & Nerurkar, V. R. (2004) A rapid in vitro polyomavirus DNA replication assay, J Virol Methods. 122, 123–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the Chellappan lab is supported by the grants CA63136, CA77301 and CA127725 from the NIH. We wish to thank Mark Alexandrow, Moffitt Cancer Center, for providing the pEPI-1 plasmid and for helpful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rizwani, W., Chellappan, S.P. (2009). In Vitro Replication Assay with Mammalian Cell Extracts. In: Chellappan, S. (eds) Chromatin Protocols. Methods in Molecular Biology, vol 523. Humana Press. https://doi.org/10.1007/978-1-59745-190-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-190-1_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-873-7

  • Online ISBN: 978-1-59745-190-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics