In Vitro Replication Assay with Mammalian Cell Extracts

  • Wasia Rizwani
  • Srikumar P. Chellappan
Part of the Methods in Molecular Biology book series (MIMB, volume 523)


Regulatory mechanisms for DNA replication are crucial to the control of the cell cycle in eukaryotic cells. One of the widely used assays to understand the complex mammalian replication system is the cell-free in vitro replication assay (IVRA). IVRA can provide a snapshot of the regulatory mechanisms controlling replication in higher eukaryotes by using a single plasmid, pEPI-1. This chapter outlines the general strategies and protocols used to perform IVRA to study the differential recruitment of replication factors either independently or in combination, based on the experience in studying the role of prohibitin in replication as well as other published protocols. This method can be employed to identify not only proteins that assist replication but also proteins that inhibit replication of mammalian genome.

Key words

Replication assay pEPI-1 plasmid nuclear and cytosolic extracts 



Work in the Chellappan lab is supported by the grants CA63136, CA77301 and CA127725 from the NIH. We wish to thank Mark Alexandrow, Moffitt Cancer Center, for providing the pEPI-1 plasmid and for helpful discussions.


  1. 1.
    Dean, F. B., Bullock, P., Murakami, Y., Wobbe, C. R., Weissbach, L. & Hurwitz, J. (1987) Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication, Proc Natl Acad Sci U S A. 84, 16–20.Google Scholar
  2. 2.
    Simmons, D. T. (2000) SV40 large T antigen functions in DNA replication and transformation, Adv Virus Res. 55, 75–134.PubMedCrossRefGoogle Scholar
  3. 3.
    Coverley, D. & Laskey, R. A. (1994) Regulation of eukaryotic DNA replication, Annu Rev Biochem. 63, 745–76.PubMedCrossRefGoogle Scholar
  4. 4.
    Bell, S. P. & Dutta, A. (2002) DNA replication in eukaryotic cells, Annu Rev Biochem. 71, 333–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Blow, J. J. & Hodgson, B. (2002) Replication licensing – defining the proliferative state?, Trends Cell Biol. 12, 72–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Alexandrow, M. G., Ritzi, M., Pemov, A. & Hamlin, J. L. (2002) A potential role for mini-chromosome maintenance (MCM) proteins in initiation at the dihydrofolate reductase replication origin, J Biol Chem. 277, 2702–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Aparicio, O. M., Weinstein, D. M. & Bell, S. P. (1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase, Cell. 91, 59–69.PubMedCrossRefGoogle Scholar
  8. 8.
    Labib, K., Tercero, J. A. & Diffley, J. F. (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression, Science. 288, 1643–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Schaarschmidt, D., Ladenburger, E. M., Keller, C. & Knippers, R. (2002) Human Mcm proteins at a replication origin during the G1 to S phase transition, Nucleic Acids Res. 30, 4176–85.PubMedCrossRefGoogle Scholar
  10. 10.
    You, Z., Komamura, Y. & Ishimi, Y. (1999) Biochemical analysis of the intrinsic Mcm4-Mcm6-mcm7 DNA helicase activity, Mol Cell Biol. 19, 8003–15.PubMedGoogle Scholar
  11. 11.
    DePamphilis, M. L. (1999) Replication origins in metazoan chromosomes: fact or fiction? Bioessays. 21, 5–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Bell, S. P. & Stillman, B. (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex, Nature. 357, 128–34.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee, D. G. & Bell, S. P. (1997) Architecture of the yeast origin recognition complex bound to origins of DNA replication, Mol Cell Biol. 17, 7159–68.PubMedGoogle Scholar
  14. 14.
    Mechali, M. (2001) DNA replication origins: from sequence specificity to epigenetics, Nat Rev Genet. 2, 640–5.PubMedCrossRefGoogle Scholar
  15. 15.
    McWhinney, C. & Leffak, M. (1990) Autonomous replication of a DNA fragment containing the chromosomal replication origin of the human c-myc gene, Nucleic Acids Res. 18, 1233–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Price, G. B., Allarakhia, M., Cossons, N., Nielsen, T., Diaz-Perez, M., Friedlander, P., Tao, L. & Zannis-Hadjopoulos, M. (2003) Identification of a cis-element that determines autonomous DNA replication in eukaryotic cells, J Biol Chem. 278, 19649–59.PubMedCrossRefGoogle Scholar
  17. 17.
    Bode, J., Kohwi, Y., Dickinson, L., Joh, T., Klehr, D., Mielke, C. & Kohwi-Shigematsu, T. (1992) Biological significance of unwinding capability of nuclear matrix-associating DNAs, Science. 255, 195–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Stehle, I. M., Scinteie, M. F., Baiker, A., Jenke, A. C. & Lipps, H. J. (2003) Exploiting a minimal system to study the epigenetic control of DNA replication: the interplay between transcription and replication, Chromosome Res. 11, 413–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Piechaczek, C., Fetzer, C., Baiker, A., Bode, J. & Lipps, H. J. (1999) A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells, Nucleic Acids Res. 27, 426–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Schaarschmidt, D., Baltin, J., Stehle, I. M., Lipps, H. J. & Knippers, R. (2004) An episomal mammalian replicon: sequence-independent binding of the origin recognition complex, Embo J. 23, 191–201.PubMedCrossRefGoogle Scholar
  21. 21.
    Baiker, A., Maercker, C., Piechaczek, C., Schmidt, S. B., Bode, J., Benham, C. & Lipps, H. J. (2000) Mitotic stability of an episomal vector containing a human scaffold/matrix-attached region is provided by association with nuclear matrix, Nat Cell Biol. 2, 182–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Jenke, B. H., Fetzer, C. P., Stehle, I. M., Jonsson, F., Fackelmayer, F. O., Conradt, H., Bode, J. & Lipps, H. J. (2002) An episomally replicating vector binds to the nuclear matrix protein SAF-A in vivo, EMBO Rep. 3, 349–54.PubMedCrossRefGoogle Scholar
  23. 23.
    Gilbert, D. M., Miyazawa, H. & DePamphilis, M. L. (1995) Site-specific initiation of DNA replication in Xenopus egg extract requires nuclear structure, Mol Cell Biol. 15, 2942–54.PubMedGoogle Scholar
  24. 24.
    Hyrien, O. & Mechali, M. (1992) Plasmid replication in Xenopus eggs and egg extracts: a 2D gel electrophoretic analysis, Nucleic Acids Res. 20, 1463–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Mahbubani, H. M., Paull, T., Elder, J. K. & Blow, J. J. (1992) DNA replication initiates at multiple sites on plasmid DNA in Xenopus egg extracts, Nucleic Acids Res. 20, 1457–62.PubMedCrossRefGoogle Scholar
  26. 26.
    Newport, J. (1987) Nuclear reconstitution in vitro: stages of assembly around protein-free DNA, Cell. 48, 205–17.PubMedCrossRefGoogle Scholar
  27. 27.
    Newport, J. & Spann, T. (1987) Disassembly of the nucleus in mitotic extracts: membrane vesicularization, lamin disassembly, and chromosome condensation are independent processes, Cell. 48, 219–30.PubMedCrossRefGoogle Scholar
  28. 28.
    Maiorano, D., Cuvier, O., Danis, E. & Mechali, M. (2005) MCM8 is an MCM2-7-related protein that functions as a DNA helicase during replication elongation and not initiation, Cell. 120, 315–28.PubMedCrossRefGoogle Scholar
  29. 29.
    Maiorano, D., Moreau, J. & Mechali, M. (2000) XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis, Nature. 404, 622–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Alexiadis, V., Halmer, L. & Gruss, C. (1997) Influence of core histone acetylation on SV40 minichromosome replication in vitro, Chromosoma. 105, 324–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Baltin, J., Leist, S., Odronitz, F., Wollscheid, H. P., Baack, M., Kapitza, T., Schaarschmidt, D. & Knippers, R. (2006) 32. DNA replication in protein extracts from human cells requires ORC and Mcm proteins, J Biol Chem. 281, 12428–35.PubMedCrossRefGoogle Scholar
  32. 32.
    Hirt, B. (1967) Selective extraction of polyoma DNA from infected mouse cell cultures, J Mol Biol. 26, 365–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Ziegler, K., Bui, T., Frisque, R. J., Grandinetti, A. & Nerurkar, V. R. (2004) A rapid in vitro polyomavirus DNA replication assay, J Virol Methods. 122, 123–7.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Wasia Rizwani
    • 1
  • Srikumar P. Chellappan
    • 2
  1. 1.H. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  2. 2.Drug Discovery ProgramH. Lee Moffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations