Preparation of Chromatin Assembly Extracts from Preblastoderm Drosophila Embryos

  • Edgar Bonte
  • Peter B. Becker
Part of the Methods in Molecular Biology book series (MIMB, volume 523)


A rigorous biochemical analysis of chromatin structure and function requires the assembly of chromatin in vitro. A useful alternative to reconstituting nucleosomal arrays from pure or recombinant histones by salt gradient dialysis is the assembly of more complex chromatin from assembly extracts under physiological conditions. Extracts from preblastoderm embryos have proven to be particularly efficient, due to the presence of large stores of native complexes of histones, histone chaperones and ATP-dependent nucleosome spacing factors. The resulting chromatin is an excellent approximation of physiological chromatin in vivo. This chapter describes the preparation of chromatin assembly extracts and the chromatin assembly reaction.

Key words

Nucleosome assembly chromatin reconstitution in vitro analysis linker histone Drosophila 


  1. 1.
    Becker, P.B., and Wu, C. (1992) Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol. Cell. Biol. 12, 2241–2249.PubMedGoogle Scholar
  2. 2.
    Blank, T.A., and Becker, P.B. (1995) Electrostatic mechanism of nucleosome spacing. J. Mol. Biol. 252, 305–313.PubMedCrossRefGoogle Scholar
  3. 3.
    Sandaltzopoulos, R., Blank, T., and Becker, P.B. (1994) Transcriptional repression by nucleosomes but not H1 in reconstituted preblastoderm Drosophila chromatin. EMBO J. 13, 373–379.PubMedGoogle Scholar
  4. 4.
    Tsukiyama, T., and Wu, C. (1995) Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83, 1011–1020.PubMedCrossRefGoogle Scholar
  5. 5.
    Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R., and Kadonaga, J.T. (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155. Google Scholar
  6. 6.
    Varga-Weisz, P.D., Wilm, M., Bonte, E., Dumas, K., Mann, M., and Becker, P.B. (1997) Chromatin remodelling factor CHRAC contains the ATPases ISWI and toposiomerase II. Nature 388, 598–602.PubMedCrossRefGoogle Scholar
  7. 7.
    Ner, S.S., and Travers, A.A. (1994) HMG-D, the Drosophila melanogaster homologue of HMG 1 protein, is associated with early embryonic chromatin in the absence of histone H1. EMBO J. 13, 1817–1822.PubMedGoogle Scholar
  8. 8.
    Kamakaka, R.T., Bulger, M., and Kadonaga, J.T. (1993) Potentiation of RNA polymerase II transcription by Gal4-VP16 during but not after DNA replication. Genes Dev. 7, 1779–1795.PubMedCrossRefGoogle Scholar
  9. 9.
    Shaffer, C., Wuller, J.M., and Elgin, S.C.R., ed. Raising large quantities of Drosophila for biochemical experiments. Methods in Cell Biology, ed. L.S.B. Goldstein and E.A. Fyrberg. Vol. 44. 1994, Academic Press: San Diego. 99–110.Google Scholar
  10. 10.
    Nightingale, K.P., and Becker, P.B. (1998) Structural and functional analysis of chromatin assembled from defined histones. Methods 15, 343–353.PubMedCrossRefGoogle Scholar
  11. 11.
    Fyodorov, D.V., and Kadonaga, J.T. (2003) Chromatin assembly in vitro with purified recombinant ACF and NAP-1. Methods Enzymol. 371, 499–515.PubMedCrossRefGoogle Scholar
  12. 12.
    Varga-Weisz, P., Wilm, M. Bonte, E., Dumas, K., Mann, M., and Becker, P.B. (1997) Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602.PubMedCrossRefGoogle Scholar
  13. 13.
    Blank, T.A., Sandaltzopoulos, R. and Becker, P.B. (1997) Biochemical Analysis of chromatin structure and function using Drosophila embryo extracts. Methods 12, 28–35.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Edgar Bonte
    • 1
  • Peter B. Becker
    • 1
  1. 1.MolekularbiologieAdolf-Butenandt-InstitutMünchenGermany

Personalised recommendations