Skip to main content

Subcellular Localization of Intracellular Human Proteins by Construction of Tagged Fusion Proteins and Transient Expression in COS-7 Cells

  • Protocol
Genomics Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 439))

  • 2250 Accesses

Abstract

Identifying the subcellular compartment of a protein is an important step toward assigning protein function. Starting with a clone containing the open reading frame (ORF) of interest, it is possible to attach a variety of short amino acid tags or fluorescent proteins and detect the location of the protein, after transfection into a cell line, using fluorescent microscopy. By collecting data from various expression clone constructs, using a range of cell lines and double labeling with cellular compartment markers, a picture of the localization of a gene can be built up. This chapter describes how to obtain the ORF clone for your gene of interest, clone it into your choice of mammalian expression vector or vectors, transiently transfect for visualization, and where to get started when interpreting the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Vidal M (2001) A biological atlas of functional maps. Cell 104:333–339

    Article  CAS  PubMed  Google Scholar 

  2. 2. Simpson JC, Pepperkok R (2006) The subcellular localization of the mammalian proteome comes a fraction closer. Genome Biol 7:222

    Article  PubMed  Google Scholar 

  3. 3. Southern JA, Young DF, Heaney F, Baumgartner WK, Randall RE (1991) Identification of an epitope on the P and V proteins of simian virus 5 that distinguishes between two isolates with different biological characteristics. J Gen Virol. 72, Part 7:1551–1557

    Article  CAS  PubMed  Google Scholar 

  4. 4. Hartley JL, Temple GF, Brasch MA (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10:1788–1795

    Article  CAS  PubMed  Google Scholar 

  5. 5. Walhout AJ, Temple GF, Brasch MA, Hartley, JL, Lorson MA, van den Heuvel S, Vidal M (2000) GATEWAY recombinational cloning: Application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol 328:575–592

    Article  CAS  PubMed  Google Scholar 

  6. 6. Mehrle A, Rosenfelder H, Schupp I, del Val C, Arlt D, Hahne F, Bechtel S, Simpson J, Hofmann O, Hide W et al (2006) The LIFEdb database in 2006. Nucleic Acids Res 34: D415–418

    Article  CAS  PubMed  Google Scholar 

  7. 7. Simpson JC, Wellenreuther R, Poustka A, Pepperkok R, Wiemann S (2000) Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep 1:287–292

    Article  CAS  PubMed  Google Scholar 

  8. 8. Fink JL, Aturaliya RN, Davis MJ, Zhang F, Hanson K, Teasdale MS, Kai C, Kawai J, Carninci P, Hayashizaki Y et al (2006) LOCATE: A mouse protein subcellular localization database. Nucleic Acids Res 34:D213–D217

    Article  CAS  PubMed  Google Scholar 

  9. 9. Temple G, Lamesch P, Milstein S, Hill DE, Wagner L, Moore T, Vidal M (2006) From genome to proteome: Developing expression clone resources for the human genome. Hum Mol Genet 15, Spec No 1:R31–R43

    Article  CAS  PubMed  Google Scholar 

  10. 10. Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K et al (2004) Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 36:40–45

    Article  PubMed  Google Scholar 

  11. 11. Strausberg, RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF et al (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99:16899–16903

    Article  PubMed  Google Scholar 

  12. 12. Wiemann S, Arlt D, Huber W, Wellenreuther R, Schleeger S, Mehrle A, Bechtel S, Sauermann M, Korf U, Pepperkok R et al (2004) From ORFeome to biology: A functional genomics pipeline. Genome Res 14:2136–2144

    Article  CAS  PubMed  Google Scholar 

  13. 13. Nakajima D, Saito K, Yamakawa H, Kikuno RF, Nakayama M, Ohara R, Okazaki N, Koga H, Nagase T, Ohara O (2005) Preparation of a set of expression-ready clones of mammalian long cDNAs encoding large proteins by the ORF trap cloning method. DNA Res 12:257–267

    Article  CAS  PubMed  Google Scholar 

  14. 14. Rual JF, Hirozane-Kishikawa T, Hao T, Bertin N, Li S, Dricot A, Li N, Rosenberg J, Lamesch P, Vidalain PO et al (2004) Human ORFeome version 1.1: A platform for reverse proteomics. Genome Res 14:2128–2135

    Article  CAS  PubMed  Google Scholar 

  15. 15. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P et al (2004) The status, quality, and expansion of the NIH full-length cDNA project: The Mammalian Gene Collection (MGC). Genome Res 14:2121–2127

    Article  PubMed  Google Scholar 

  16. 16. Collins JE, Wright CL, Edwards CA, Davis MP, Grinham JA, Cole CG, Goward ME, Aguado B, Mallya M, Mokrab Y et al (2004) A genome annotation-driven approach to cloning the human ORFeome. Genome Biol 5:R84

    Article  PubMed  Google Scholar 

  17. 17. Takagi M, Nishiok, M, Kakihara H, Kitabayashi M, Inoue H, Kawakami B, Oka M, Imanaka T (1997) Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl Environ. Microbiol 63:4504–4510

    CAS  PubMed  Google Scholar 

  18. 18. Kozak M (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234:187–208

    Article  CAS  PubMed  Google Scholar 

  19. 19. Bendtsen JD, Nielsen H, von Heijne G, Brunak,S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  20. 20. Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36

    Article  CAS  PubMed  Google Scholar 

  21. 21. Glory E, Murphy R. (2007) Automated subcellular location determination and high-throughput microscopy. Dev Cell 12:7–16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Begoña Aguado, Carol Edwards, Catherine Taylor, Charmain Wright, Frida Andersson, Gözde Akdeniz, James Grinham, Matthew Davis, and Meera Mallya for assistance with developing the protocols. We also thank Catherine Taylor and Ian Dunham for critically reading the manuscript. This work was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Collins, J.E. (2008). Subcellular Localization of Intracellular Human Proteins by Construction of Tagged Fusion Proteins and Transient Expression in COS-7 Cells. In: Starkey, M., Elaswarapu, R. (eds) Genomics Protocols. Methods in Molecular Biology™, vol 439. Humana Press. https://doi.org/10.1007/978-1-59745-188-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-188-8_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-871-3

  • Online ISBN: 978-1-59745-188-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics