Skip to main content

Application of RNAi Technology and Fluorescent Protein Markers to Study Membrane Traffic in Caenorhabditis elegans

  • Protocol
Exocytosis and Endocytosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 440))

Summary

Ribonucleic acid interference (RNAi) is a powerful tool for study of the intracellular membrane transport and membrane organelle behavior in the nematode Caenorhabditis elegans. This model organism has gained popularity in the trafficking field because of its relative simplicity, yet multicellularity. Caenorhabditis elegans is fully sequenced and has an annotated genome, it is easy to maintain, and a growing number of transgenic strains bearing markers for different membrane compartments are available. Caenorhabditis elegans is particularly well suited for protein downregulation by RNAi because of the simple but efficient methods of double-stranded RNA (dsRNA) delivery. The phenomenon of systemic RNAi in the worm further facilitates this approach. In this chapter, we describe methods and applications of RNAi in the field of membrane traffic. We summarize the fluorescent markers used as a readout for the effects of gene knockdown in different cells and tissues and give details for data acquisition and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Timmons, L. (2006) Delivery methods for RNA interference in C. elegans. Methods Mol. Biol. 351, 119–125.

    CAS  PubMed  Google Scholar 

  2. 2. Poteryaev, D., and Spang, A. (2005) A role of SAND-family proteins in endocytosis. Biochem. Soc. Trans. 33, 606–608.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Fares, H., and Grant, B. (2002) Deciphering endocytosis in Caenorhabditis elegans. Traffic 3, 11–19.

    Article  PubMed  Google Scholar 

  4. 4. Koushika, S.P., and Nonet, M.L. (2000) Sorting and transport in C. elegans: a model system with a sequenced genome. Curr. Opin. Cell Biol. 12, 517–523.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Grant, B., and Hirsh, D. (1999) Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol. Biol. Cell 10, 4311–4326.

    CAS  PubMed  Google Scholar 

  6. 6. Chen, C.C., Schweinsberg, P.J., Vashist, S., Mareiniss, D.P., Lambie, E.J., and Grant, B.D. (2006) RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol. Biol. Cell 17, 1286–1297.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Liegeois, S., Benedetto, A., Garnier, J.M., Schwab, Y., and Labouesse, M. (2006) The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J. Cell Biol. 173, 949–961.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Skop, A.R., Bergmann, D., Mohler, W.A., and White, J.G. (2001) Completion of cytokinesis in C. elegans requires a brefeldin A-sensitive membrane accumulation at the cleavage furrow apex. Curr. Biol. 11, 735–746.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Grant, B., Zhang, Y., Paupard, M.C., Lin, S.X., Hall, D.H., and Hirsh, D. (2001) Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nat. Cell Biol. 3, 573–579.

    Article  CAS  PubMed  Google Scholar 

  10. Ahringer, J. (2006) Reverse genetics. In WormBook C. elegans research Community, (ed.), WormBook, doi/10.1895 wormbook. 47. 1, http://www.wormbook.org

  11. 11. Halder, G., and Paddock, S.W. (1999) Presentation of confocal images. Methods Mol. Biol. 122, 373–384.

    CAS  PubMed  Google Scholar 

  12. 12. Lamitina, T. (2006) Functional genomic approaches in C. elegans. Methods Mol. Biol. 351, 127–138.

    CAS  PubMed  Google Scholar 

  13. 13. Hutter, H. (2006) Fluorescent reporter methods. Methods Mol. Biol. 351, 155–173.

    CAS  PubMed  Google Scholar 

  14. 14. Hermann, G.J., Schroeder, L.K., Hieb, C.A., et al. (2005) Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol. Biol. Cell 16, 3273–3288.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Fares, H., and Greenwald, I. (2001) Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nat. Genet. 28, 64–68.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Frand, A.R., Russel, S., and Ruvkun, G. (2005) Functional genomic analysis of C. elegans molting. PLoS Biol. 3, e312.

    Article  PubMed  Google Scholar 

  17. 17. Nicot, A.S., Fares, H., Payrastre, B., Chisholm, A.D., Labouesse, M., and Laporte, J. (2006) The phosphoinositide kinase PIKfyve/Fab1p regulates terminal lysosome maturation in Caenorhabditis elegans. Mol. Biol. Cell. 17, 3062–3074.

    CAS  PubMed  Google Scholar 

  18. 18. Fares, H., and Greenwald, I. (2001) Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics, 159, 133–145.

    CAS  PubMed  Google Scholar 

  19. 19. Rappleye, C.A., Paredez, A.R., Smith, C.W., McDonald, K.L., and Aroian, R.V. (1999) The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev. 13, 2838–2851.

    Article  CAS  PubMed  Google Scholar 

  20. 20. Audhya, A., Hyndman, F., McLeod, I.X., et al. (2005) A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans. J. Cell Biol. 171, 267–279.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Sato, K., Sato, M., Audhya, A., Oegema, K., Schweinsberg, P., and Grant, B.D. (2006) Dynamic regulation of caveolin-1 trafficking in the germ line and embryo of Caenorhabditis elegans. Mol. Biol. Cell 17, 3085–3094.

    Article  CAS  PubMed  Google Scholar 

  22. 22. Franz, C., Askjaer, P., Antonin, W., et al. (2005) Nup155 regulates nuclear envelope and nuclear pore complex formation in nematodes and vertebrates. EMBO J. 24, 3519–3531.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Patton, A., Knuth, S., Schaheen, B., Dang, H., Greenwald, I., and Fares, H. (2005) Endocytosis function of a ligand-gated ion channel homolog in Caenorhabditis elegans. Curr. Biol. 15, 1045–1050.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Zhang, Y., Grant, B., and Hirsh, D. (2001) RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans. Mol. Biol. Cell. 12, 2011–2021.

    CAS  PubMed  Google Scholar 

  25. 25. Treusch, S., Knuth, S., Slaugenhaupt, S.A., Goldin, E., Grant, B.D., and Fares, H. (2004) Caenorhabditis elegans functional orthologue of human protein h-mucolipin-1 is required for lysosome biogenesis. Proc. Natl. Acad. Sci. U. S. A. 101, 4483–4488.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Dang, H., Li, Z., Skolnik, E.Y., and Fares, H. (2004) Disease-related myotubularins function in endocytic traffic in Caenorhabditis elegans. Mol Biol. Cell 15, 189–196.

    Article  CAS  PubMed  Google Scholar 

  27. 27. Kubota, Y., Sano, M., Goda, S., Suzuki, N., and Nishiwaki, K. (2006) The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans. Development 133, 263–273.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Labrousse, A.M., Zappaterra, M.D., Rube, D.A., and van der Bliek, A.M. (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4, 815–826.

    Article  CAS  PubMed  Google Scholar 

  29. 29. Roudier, N., Lefebvre, C., and Legouis, R. (2005) CeVPS-27 is an endosomal protein required for the molting and the endocytic trafficking of the low-density lipoprotein receptor-related protein 1 in Caenorhabditis elegans. Traffic 6, 695–705.

    Article  CAS  PubMed  Google Scholar 

  30. 30. Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E.L., Hall, D.H., and Levine, B. (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391.

    Article  CAS  PubMed  Google Scholar 

  31. 31. Larsen, M.K., Tuck, S., Faergeman, N.J., and Knudsen, J. (2006) MAA-1, a novel acyl-CoA-binding protein involved in endosomal vesicle transport in Caenorhabditis elegans. Mol. Biol. Cell 17, 4318–4329.

    Article  CAS  PubMed  Google Scholar 

  32. 32. Matyash, V., Geier, C., Henske, A., et al. (2001) Distribution and transport of cholesterol in Caenorhabditis elegans. Mol. Biol. Cell , 12, 1725–1736.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Protocols were based on many works published by members of the worm research community. We apologize for any omissions in reference. We would like to acknowledge funding by the Biozentrum of the University of Basel.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Poteryaev, D., Spang, A. (2008). Application of RNAi Technology and Fluorescent Protein Markers to Study Membrane Traffic in Caenorhabditis elegans . In: Ivanov, A.I. (eds) Exocytosis and Endocytosis. Methods in Molecular Biology, vol 440. Humana Press. https://doi.org/10.1007/978-1-59745-178-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-178-9_25

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-865-2

  • Online ISBN: 978-1-59745-178-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics