Skip to main content

Membrane-Associated Proteins and Peptides

  • Protocol
Book cover Molecular Modeling of Proteins

Part of the book series: Methods Molecular Biology™ ((MIMB,volume 443))

Summary

This chapter discusses the practical aspects of setting up molecular dynamics simulations for membrane-associated proteins and peptides. Special emphasis lies on the analysis of such systems. The main focus is the association between a cationic peptide and an anionic lipid bilayer—a peptide/lipid—bilayer system—but the extension onto more complicated systems is discussed. Topology files for selected lipids and several new analysis tools relevant for protein—membrane simulations are presented, the most important ones of which are: g_helixaxis, to calculate the axis of a helix and its angle with the bilayer; g_arom, to calculate aromatic order parameters; and g_under, to calculate which lipids interact with the protein. A procedure is explained to calculate properties involving peptide-interacting lipids only, as opposed to all lipids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. The protein data bank. Nucleic Acids Res., 28:235–242, 2000.

    Article  CAS  PubMed  Google Scholar 

  2. 2. A. H. Joliot, A. Triller, M. Volovitch, C. Pernelle, and A. Prochiantz. Alpha-2,8-polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. New Biol., 3:1121–1134, 1991.

    CAS  PubMed  Google Scholar 

  3. 3. D. Derossi, A. H. Joliot, G. Chassaing, and A. Prochiantz. The third helix of the antennapedia homeodomain translocates through biological membranes. J. Biol. Chem., 269:10444–10450, 1994.

    CAS  PubMed  Google Scholar 

  4. 4. U. Langel, editor. Cell Penetrating Peptides. CRC Press LLC, Boca Raton, FL, 2002.

    Google Scholar 

  5. 5. A. Prochiantz. Peptide nucleic acid smugglers. Nat. Biotechnol., 16:819–820, 1998.

    Article  CAS  PubMed  Google Scholar 

  6. 6. M. Lindgren, M. Hallbrink, A. Prochiantz, and U. Langel. Cell-penetrating peptides. Trends Pharmacol., 21:99–103, 2000.

    Article  CAS  Google Scholar 

  7. 7. G. Drin, H. Demene, J. Temsamani, and R. Brasseur. Translocation of the pAntp peptide and its amphipathic analogue AP-2AL. Biochemistry, 40:1824–1834, 2001.

    Article  CAS  PubMed  Google Scholar 

  8. 8. R. Fischer, M. Fotin-Mleczek, H. Hufnagel, and R. Brock. Break on through to the other side—biophysics and cell biology shed light on cell-penetrating peptides. Chem. Bio. Chem., 6:2126–2142, 2005.

    CAS  PubMed  Google Scholar 

  9. 9. D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing, and A. Prochiantz. Cell internalization of the third helix of the antennapedia homeodomain is receptor independent. J. Biol. Chem., 271:18188–18193, 1996.

    Article  CAS  PubMed  Google Scholar 

  10. 10. M. Hällbrink, A. Florén, A. Elmquist, M. Pooga, T. Bartfai, and Ü . Langel. Cargo delivery kinetics of cell-penetrating peptides. Biochim. Biophys. Acta, 1515:101–109, 2001.

    Article  PubMed  Google Scholar 

  11. 11. T. Lethoa, S. Gaal, C. Somlai, A. Czajlik, A. Perczel, and B. Penke. Membrane translocation of penetratin and its derivatives in different cell lines. J. Mol. Recog., 16:272–279, 2003.

    Article  Google Scholar 

  12. 12. T. Letoha, S. Gaal, C. Somlai, Z. Venkei, H. Glavinas, E. Kusz, E. Duda, A. Czajlik, F. Petak, and B. Penke. Investigation of penetratin peptides. Part 2. In vitro uptake of penetratin and two of its derivatives. J. Pept. Sci., 11:805–811, 2005.

    Article  CAS  PubMed  Google Scholar 

  13. 13. J. P. Richard, K. Melikov, E. Vivès, C. Ramos, B. Verbeure, M. J. Gait, L. V. Chernomordik, and B. Lebleu. Cell-penetrating peptides: A reevaluation of the mechanism of cellular uptake. J. Biol. Chem., 278:585–590, 2003.

    Article  CAS  PubMed  Google Scholar 

  14. 14. D. Terrone, S. L. Sang, L. Roudaia, and J. R. Silvius. Penetratin and related cell-penetrating cationic peptides can translocate across lipid bilayers in the presence of a transbilayer potential. Biochemistry, 42:13787–13799, 2003.

    Article  CAS  PubMed  Google Scholar 

  15. 15. M. Magzoub, A. Pramanik, and A. Gräslund. Modeling the endosomal escape of cellpenetrating peptides: Transmembrane pH gradient driven translocation across phospholipid bilayers. Biochemistry, 44:14890–14897, 2005.

    Article  CAS  PubMed  Google Scholar 

  16. 16. M. Magzoub, L. E. Eriksson, and A. Gräslund. Comparison of the interaction, positioning, structure induction and membrane perturbation of cell-penetrating peptides and non-translocating variants with phospholipid vesicles. Biophys. Chem., 103:271–288, 2003.

    Article  CAS  PubMed  Google Scholar 

  17. 17. M. F. Lensink, B. Christiaens, J. Vandekerckhove, A. Prochiantz, and M. Rosseneu. Penetratin-membrane association: W48/R52/W56 shield the peptide from the aqueous phase. Biophys. J., 88:939–952, 2005.

    Article  CAS  PubMed  Google Scholar 

  18. 18. E. Bárány-Wallje, S. Keller, S. Serowy, S. Geibel, P. Pohl, M. Bienert, and M. Dathe. A critical reassessment of penetratin translocation across lipid membranes. Biophys. J., 89:2513–2521, 2005.

    Article  PubMed  Google Scholar 

  19. 19. E. Lindahl, B. Hess, and D. Van der Spoel. GROMACS 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Mod., 7:306–317, 2001.

    CAS  Google Scholar 

  20. 20. W. F. Van Gunsteren, S. R. Billeter, A. A. Eising, P. H. Hünenberger, P. Krüger, A. E. Mark, W. R. P. Scott, and I. G. Tironi. Biomolecular Simulation: The GROMOS96 Manual and User Guide. Hochschulverlag AG an der ETH Zürich, Zürich, Switzerland, 1996.

    Google Scholar 

  21. 21. O. Berger, O. Edholm, and F. Jähnig. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J., 72:2002–2013, 1997.

    Article  CAS  PubMed  Google Scholar 

  22. 22. B. Christiaens, J. Grooten, M. Reusens, A. Joliot, M. Goethals, J. Vandekerckhove, A. Prochiantz, and M. Rosseneu. Membrane interaction and cellular internalization of penetratin peptides. Eur. J. Biochem., 271:1187–1197, 2004.

    Article  CAS  PubMed  Google Scholar 

  23. 23. S. White and W. Wimley. Membrane protein folding and stability: Physical principles. Ann. Rev. Biophys. Biomol. Struct., 28:319–365, 1999.

    Article  CAS  Google Scholar 

  24. 24. A. E. García and K. Y. Sanbonmatsu. α-Helical stabilization by side chain shielding of backbone hydrogen bonds. Proc. Nat. Ac. Sci. USA, 99:2782–2787, 2002.

    Article  Google Scholar 

  25. 25. F. Avbelj, P. Luo, and R. L. Baldwin. Energetics of the interaction between water and the helical peptide group and its role in determining helix propensities. Proc. Nat. Ac. Sci. USA, 97:10786–10791, 2000.

    Article  CAS  Google Scholar 

  26. 26. M. Magzoub, L. E. Eriksson, and A. Gräslund. Conformational states of the cell penetrating peptide penetratin when interacting with phospholipid vesicles: Effects of surface charge and peptide concentration. Biochim. Biophys. Acta, 1563:53–63, 2002.

    Article  CAS  PubMed  Google Scholar 

  27. 27. S. Balayssac, F. Burlina, O. Convert, G. Bolbach, G. Chassaing, and O. Lequin. Comparison of penetratin and other homeodomain-derived cell-penetrating peptides: Interaction in a membrane-mimicking environment and cellular uptake efficiency. Biochemistry, 45:1408–1420, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. 28. M. F. Lensink, A. M. Haapalainen, J. K. Hiltunen, T. Glumoff, and A. H. Juffer. Response of SCP-2L domain of human MFE-2 to ligand removal: Binding site closure and burial of peroxisomal targeting signal. J. Mol. Biol., 323:99–113, 2002.

    Article  CAS  PubMed  Google Scholar 

  29. 29. J. A. Christopher, R. Swanson, and T. O. Baldwin. Algorithms for finding the axis of a helix: Fast rotational and parametric least-squares methods. Comput. Chem., 20:339–345, 1996.

    Article  CAS  PubMed  Google Scholar 

  30. 30. D. P. Tieleman, L. R. Forrest, M. S. P. Sansom, and H. J. C. Berendsen. Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: Molecular dynamics simulations. Biochemistry, 37:17554–17561, 1998.

    Article  CAS  PubMed  Google Scholar 

  31. 31. K. M. Merz, Jr. and B. Roux, editors. Biological Membranes: A Molecular Perspective from Computation and Experiment. Birkhäuser, Boston, MA, 1996.

    Google Scholar 

  32. 32. G. Fragneto, F. Graner, T. Charitat, P. Dubos, and E. Bellet-Amalric. Interaction of the third helix of antennapedia homeodomain with a deposited phospholipid bilayer: A neutron reflectivity structural study. Langmuir, 16:4581–4588, 2000.

    Article  CAS  Google Scholar 

  33. 33. C. E. Brattwall, P. Lincoln, and B. Nordďen. Orientation and conformation of cell-penetrating peptide penetratin in phospholipid vesicle membranes determined by polarized-light spectroscopy. J. Am. Chem. Soc., 125:1421–14215, 2003.

    Article  Google Scholar 

  34. 34. M. Lindberg, H. Biverstahl, A. Gräslund, and L. Maler. Structure and positioning comparison of two variants of penetratin in two different membrane mimicking systems by NMR. Eur. J. Biochem., 270:2055–2063, 2003.

    Article  Google Scholar 

  35. 35. B. Christiaens, S. Symoens, S. Vanderheyden, Y. Engelborghs, A. Joliot, A. Prochiantz, J. Vandekerckhove, M. Rosseneu, and B. Vanloo. Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur. J. Biochem., 269:2918–2926, 2002.

    Article  CAS  PubMed  Google Scholar 

  36. 36. L. Zhang, A. Rozek, and R. E. W. Hancock. Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem., 276:35714–35722, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Prof. D.P. Tieleman (University of Calgary) and his coworkers for making lipid topologies and bilayer structures available, and the GROMACS development team for sharing their simulation program and analysis routines with the open-source community.

Author information

Authors and Affiliations

Authors

Editor information

Andreas Kukol

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lensink, M.F. (2008). Membrane-Associated Proteins and Peptides. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods Molecular Biology™, vol 443. Humana Press. https://doi.org/10.1007/978-1-59745-177-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-177-2_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-864-5

  • Online ISBN: 978-1-59745-177-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics