Skip to main content

Molecular Dynamics Simulations of Membrane Proteins

  • Protocol
Book cover Molecular Modeling of Proteins

Part of the book series: Methods Molecular Biology™ ((MIMB,volume 443))

Summary

Membrane protein structures are underrepresented in the Protein Data Bank (PDB) because of difficulties associated with expression and crystallization. As such, it is one area in which computational studies, particularly molecular dynamics (MD), can provide useful additional information. Recently, there has been substantial progress in the simulation of lipid bilayers and membrane proteins embedded within them. Initial efforts at simulating membrane proteins embedded within a lipid bilayer were relatively slow and interactive processes, but recent advances now mean that the setup and running of membrane protein simulations is somewhat more straightforward, although not without its problems. In this chapter, we outline practical methods for setting up and running MD simulations of a membrane protein embedded within a lipid bilayer and discuss methodologies that are likely to contribute future improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Wallin, E., and von Heijne, G. (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archean, and eukaryotic organisms. Prot. Sci. 7, 1029–1038.

    Article  CAS  Google Scholar 

  2. 2. Terstappen, G. C., and Reggiani, A. (2001) In silico research in drug discovery. Trends Pharmacol. Sci. 22, 23–26.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Lemieux, M. J., Huang, Y., and Wang, D. N. (2004) The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily. Curr. Opin. Struct. Biol. 14, 405–412.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Guan, L., and Kaback, H. R. (2006) Lessons from lactose permease. Annu. Rev. Biophys. Biomol. Struct. 35, 67–91.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Gether, U., Andersen, P. H., Larsson, O. M., and Schousboe, A. (2006) Neurotransmitter transporters: molecular function of important drug targets. Trends Pharmacol. Sci. 27, 375–383.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Ash, W. L., Zlomislic, M. R., Oloo, E. O., and Tieleman, D. P. (2004) Computer simulations of membrane proteins. Biochem. Biophys. Acta 1666, 158–189.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Sperotto, M. M., May, S., and Baumgaertner, A. (2006) Modelling of proteins in membranes. Chem. Phys. Lipids. 141, 2–29.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Beckstein, O., Biggin, P. C., Bond, P., Bright, J. N., Domene, C., Grottesi, A., Holyoake, J., and Sansom, M. S. P. (2003) Ion channel gating: insights via molecular simulations. FEBS Lett. 555, 85–90.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Gumbart, J., Wang, Y., Aksimentiev, A., Tajkhorshid, E., and Schulten, K. (2005) Molecular dynamics simulations of proteins in lipid bilayers. Curr. Opin. Struct. Biol. 15, 423–431.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Roux, B. (2005) Ion conduction and selectivity in K(+) channels. Annu. Rev. Biophys. Biomol. Struct. 34, 153–171.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Bond, P. J., and Sansom, M. S. P. (2004) The simulation approach to bacterial outer membrane proteins. Mol. Memb. Biol. 21, 151–161.

    Article  CAS  Google Scholar 

  12. 12. Beckstein, O., Biggin, P. C., and Sansom, M. S. P. (2001) A hydrophobic gating mechanism for nanopores. J. Phys. Chem. B. 105, 12902–12905.

    Article  CAS  Google Scholar 

  13. 13. Beckstein, O., and Sansom, M. S. P. (2006) A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor. Phys. Biol. 3, 147–159.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Arinaminpathy, Y., Biggin, P. C., Shrivastava, I. H., and Sansom, M. S. P. (2003) A prokaryotic glutamate receptor: homology modelling and molecular dynamics simulations of GluR0. FEBS Lett. 553, 321–327.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Nielsen, S. O., Lopez, C. F., Srinivas, G., and Klein, M. L. (2004) Coarse grain models and the computer simulation of soft materials. J. Phys. Cond. Matt. 16, R481–R512.

    Article  CAS  Google Scholar 

  16. 16. Anézo, C., de Vries, A. H., Hoeltje, H.-D., Tieleman, D. P., and Marrink, S. J. (2003) Methodological issues in lipid bilayer simulations. J. Phys. Chem. B. 107, 9424–9433.

    Article  Google Scholar 

  17. 17. Ulmschneider, M. B., Sansom, M. S. P., and Di Nola, A. (2005) Properties of integral membrane protein structures: derivation of an implicit membrane potential. Proteins 59, 252–265.

    Article  CAS  PubMed  Google Scholar 

  18. 18. Basyn, F., Charloteaux, B., Thomas, A., and Brasseur, R. (2001) Prediction of membrane protein orientation in lipid bilayers: a theoretical approach. J. Mol. Graph. Model. 20, 235–244.

    Article  CAS  PubMed  Google Scholar 

  19. 19. Tusnady, G. E., Dosztanyi, Z., and Simon, I. (2005) PDB TM: selection and membrane localization of transmembrane proteins in the protein data bank. Nucleic Acids Res. 33, D275rD78.

    Google Scholar 

  20. 20. Lomize, M. A., Lomize, A. L., Pogozheva, I. D., and Mosberg, H. I. (2006) OPM: Orientations of proteins in membranes database. Bioinformatics 22, 623–625.

    Article  CAS  PubMed  Google Scholar 

  21. 21. DeLano, W. L. (2004) The PyMOL molecular graphics system. DeLano Scientific LLC, San Carlos, CA.

    Google Scholar 

  22. 22. Vriend, G. (1990) A molecular modelling and drug design program. J. Mol. Graph. 8, 52–56.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Fiser, A., and Sali, A. (2003) Modeller: generation and refinement of homology-based protein structure models. Meths. Enzym. 374, 461–491.

    Article  CAS  Google Scholar 

  24. 24. Li, H., Robertson, A. D., and Jensen, J. H. (2005) Very fast empirical prediction and interpretation of protein pKa values. Proteins 61, 704–721.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., and Onufriev, A. (2005) H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res. 33, W368–W71.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Luzhkov, V. B., and Å qvist, J. (2000) A computational study of ion binding and protonation states in the KcsA potassium channel. Biochim. Biophys. Acta 1481, 360–370.

    Article  CAS  PubMed  Google Scholar 

  27. 27. Ranatunga, K. M., Shrivastava, I. H., Smith, G. R., and Sansom, M. S. P. (2001) Side-chain ionization states in a potassium channel. Biophys. J. 80, 1210–1219.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Bernèche, S., and Roux, B. (2002) The ionization state and the conformation of Glu-71 in the KcsA K(+) channel. Biophys. J. 82, 772–780.

    Article  PubMed  Google Scholar 

  29. 29. Cordero-Morales, J. F., Cuello, L. G., Zhao, Y., Jogini, V., Cortes, D. M., Roux, B., and Perozo, E. (2006) Molecular determinants of gating at the potassium channel selectivity filter. Nat. Struct. Biol. 13, 319–322.

    Article  CAS  Google Scholar 

  30. 30. Arinaminpathy, Y., Sansom, M. S. P., and Biggin, P. C. (2002) Molecular dynamics simulations of the ligand-binding domain of the ionotropic glutamate receptor GluR2. Biophys. J. 82, 676–683.

    Article  CAS  PubMed  Google Scholar 

  31. 31. Arinaminpathy, Y., Sansom, M. S. P., and Biggin, P. C. (2006) Binding site flexibility: Molecular simulation of partial and full agonists within a glutamate receptor. Mol. Pharm. 69, 11–18.

    CAS  Google Scholar 

  32. 32. Kaye, L. S., Sansom, M. S. P., and Biggin, P. C. (2006) Molecular dynamics simulations of an NMDA Receptor. J. Biol. Chem 281, 12736–12742.

    Article  CAS  PubMed  Google Scholar 

  33. 33. Mouritsen, O. G., and Jorgensen, K. (1997) Small-scale lipid-membrane structure: simulation versus experiment. Curr. Opin. Struct. Biol. 7, 518–527.

    Article  CAS  PubMed  Google Scholar 

  34. 34. Feller, S. E. (2000) Molecular dynamics simulations of lipid bilayers. Curr. Opin. Coll. Interface Sci. 5, 217–223.

    Article  CAS  Google Scholar 

  35. 35. Scott, H. L. (2002) Modeling the lipid component of membranes. Curr. Opin. Struct. Biol. 12, 495–502.

    Article  CAS  PubMed  Google Scholar 

  36. 36. Tieleman, D. P., Marrink, S. J., and Berendsen, H. J. C. (1997) A computer perspective of membranes: Molecular dynamics studies of lipid bilayer systems. Biochim. Biophys. Acta 1331, 235–270.

    CAS  PubMed  Google Scholar 

  37. 37. Belohorcova, K., Davis, J. H., Woolf, T. B., and Roux, B. (1997) Structure and dynamics of an amphiphilic peptide in a lipid bilayer: a molecular dynamics study. Biophys. J. 73, 3039–3055.

    Article  CAS  PubMed  Google Scholar 

  38. 38. Woolf, T. B., and Roux, B. (1996) Structure, energetics, and dynamics of lipid-protein interactions — a molecular-dynamics study of the gramicidin-A channel in a DMPC bilayer. Proteins: Struc. Func. Genet. 24, 92–114.

    Article  CAS  Google Scholar 

  39. 39. Faraldo-Gómez, J. D., Smith, G. R., and Sansom, M. S. P. (2002) Setting up and optimization of membrane protein simulations. Eur. Biophys. J. 31, 217–227.

    Article  PubMed  Google Scholar 

  40. 40. Lindahl, E., Hess, B., and van der Spoel, D. (2001) GROMACS 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Model 7, 306–317.

    CAS  Google Scholar 

  41. 41. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD—Visual molecular dynamics. J. Molec. Graph. 14, 33–38.

    Article  CAS  Google Scholar 

  42. 42. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., and Schulten, K. (2005) Scalable molecular dynamics with NAMD. J. Comp. Chem. 26, 1781–17802.

    Article  CAS  Google Scholar 

  43. 43. Christen, M., and Van Gunsteren, W. F. (2006) Multigraining: An algorithm for simultaneous fine-grained and coarse-grained simulation of molecular systems. J. Chem. Phys. 124, 154106.1–06.7.

    Article  Google Scholar 

  44. 44. Chang, R., Ayton, G. S., and Voth, G. A. (2005) Multiscale coupling of mesoscopic and atomistic-level lipid bilayer simulations. J. Chem. Phys. 122, 244716.

    Article  PubMed  Google Scholar 

  45. 45. Shi, Q., Izvekov, S., and Voth, G. A. (2006) Mixed atomistic and coarse-grained molecular dynamics: Simulation of a membrane-bound ion channel. J. Phys. Chem. B. 110, 15045–15048.

    Article  CAS  PubMed  Google Scholar 

  46. 46. Smit, B., Hilbers, A. J., Esselink, K., Rupert, L. A. M., Van Os, N. M., and Schlijper, G. (1990) Computer simulations of a water/oil interface in the presence of micelles. Nature 348, 624–625.

    Article  CAS  Google Scholar 

  47. 47. Murtola, T., Falck, E., Patra, M., Karttunen, M., and Vattulainen, I. (2004) Coarse-grained model for phospholipid/cholesterol bilayer. J. Chem. Phys. 121, 9156–9165.

    Article  CAS  PubMed  Google Scholar 

  48. 48. Stevens, M. J., Hoh, J. H., and Woolf, T. B. (2003) Insights into the molecular mechanism of membrane fusion from simulation: Evidence for the association of splayed tails. Phys. Rev. Lett. 91, 188102.1–02.4.

    Article  Google Scholar 

  49. 49. Shelley, J. C., Shelley, M. Y., Reeder, R. C., Bandyopadhyay, S., and Klein, M. L. (2001) A coarse grain model for phospholipid simulations. J. Phys. Chem. B 105, 4464–4470.

    Article  CAS  Google Scholar 

  50. 50. Goetz, R., and Lipowsky, R. (1998) Computer simulations of bilayer membranes: Self-assembly and interfacial tension. J. Chem. Phys. 108, 7397–73409.

    Article  CAS  Google Scholar 

  51. 51. Whitehead, L., Edge, C. M., and Essex, J. W. (2001) Molecular dynamics simulation of the hydrocarbon region of a biomembrane using a reduced representation model. J. Comput. Chem. 22, 1622–1633.

    Article  CAS  Google Scholar 

  52. 52. Tepper, H. L., and Voth, G. A. (2005) A coarse-grained model for double-helix molecules in solution: Spontaneous helix formation and equilibrium properties. J. Chem. Phys. 122, 124906.1–06.11.

    Article  Google Scholar 

  53. 53. Tozzini, V. (2005) Coarse-grained models for proteins. Curr. Opin. Struct. Biol. 15, 144–150.

    Article  CAS  PubMed  Google Scholar 

  54. 54. Nielsen, S. O., Lopez, C. F., Ivanov, I., Moore, P. B., Shelley, J. C., and Klein, M. L. (2004) Transmembrane peptide-induced lipid sorting and mechanism of Lalpha-to-inverted phase transition using coarse-grain molecular dynamics. Biophys. J. 87, 2107–2115.

    Article  CAS  PubMed  Google Scholar 

  55. 55. Venturoli, M., Smit, B., and Sperotto, M. M. (2005) Simulation studies of protein-induced bi-layer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Biophys. J. 88, 1778–1798.

    Article  CAS  PubMed  Google Scholar 

  56. 56. Lopez, C. F., Nielsen, S. O., Moore, P. B., and Klein, M. L. (2004) Understand nature's design for a nanosyringe. Proc. Nat. Acad. Sci. USA 101, 4431–4434.

    Article  CAS  PubMed  Google Scholar 

  57. 57. Marrink, S. J., de Vries, A. H., and Mark, A. E. (2004) Coarse grained model for semiquanti-tative lipid simulations. J. Phys. Chem. B 108, 750–760.

    Article  CAS  Google Scholar 

  58. 58. Bond, P. J., and Sansom, M. S. P. (2006) Insertion and assembly of membrane proteins via simulation. J. Am. Chem. Soc. 128, 2697–26704.

    Article  CAS  PubMed  Google Scholar 

  59. 59. Bond, P. J., Holyoake, J., Ivetac, A., Khalid, S., and Sansom, M. S. P. (2006) Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J. Struct. Biol. 157, 593–605.

    Article  PubMed  Google Scholar 

  60. 60. Shih, A. Y., Arkhipov, A., Freddolino, P. L., and Schulten, K. (2006) Coarse grained proteinlipid model with application to lipoprotein particles. J. Phys. Chem. B 110, 3674–3684.

    Article  CAS  PubMed  Google Scholar 

  61. 61. Bond, P. J., and Sansom, M. S. P. (2006) Bilayer deformation by the Kv channel voltage sensor domain revealed by self-assembly simulations. Proc. Nat. Acad. Sci. USA 104, 2631–2636.

    Article  Google Scholar 

  62. 62. Patra, M., Karttunen, M., Hyvönen, M. T., Falck, E., Lindqvist, P., and Vattulainen, I. (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys. J. 84, 3636–3645.

    Article  CAS  PubMed  Google Scholar 

  63. 63. Patra, M., Karttunen, M., Hyvönen, M. T., Falck, E., and Vattulainen, I. (2004) Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in long-range electrostatic interactions. J. Phys. Chem. B. 108, 4485–4494.

    Article  CAS  Google Scholar 

  64. 64. de Vries, A. H., Chandraskhar, I., van Gunsteren, W. F., and Hunenberger, P. H. (2005) Molecular dynamics simulations of phospholipid bilayers: Influence of artificial periodicity, system size, and simulation time. J. Phys. Chem. B. 109, 11643–11652.

    Article  PubMed  Google Scholar 

  65. 65. MacKerrell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCartney, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., and Karplus, M. (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Wellcome Trust for support and Dr. Jorge Pikunic for the BtuB coordinates and useful discussions.

Author information

Authors and Affiliations

Authors

Editor information

Andreas Kukol

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Biggin, P.C., Bond, P.J. (2008). Molecular Dynamics Simulations of Membrane Proteins. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods Molecular Biology™, vol 443. Humana Press. https://doi.org/10.1007/978-1-59745-177-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-177-2_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-864-5

  • Online ISBN: 978-1-59745-177-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics