Skip to main content

Normal Modes and Essential Dynamics

  • Protocol
Molecular Modeling of Proteins

Part of the book series: Methods Molecular Biology™ ((MIMB,volume 443))

Summary

Normal mode analysis and essential dynamics analysis are powerful methods used for the analysis of collective motions in biomolecules. Their application has led to an appreciation of the importance of protein dynamics in function and the relationship between structure and dynamical behavior. In this chapter, the methods and their implementation are introduced and recent developments such as elastic networks and advanced sampling techniques are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Go, N., Noguti, T. and Nishikawa, T. (1983). Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl. Acad. Sci. USA 80, 3696–3700.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Levitt, M., Sander, C. and Stern, P. S. (1983). The normal modes of a protein: Native bovine pancreatic trypsin inhibitor. Int. J. Quant. Chem. 10, 181–199.

    CAS  Google Scholar 

  3. 3. Brooks, B. and Karplus, M. (1983). Harmonic dynamics of proteins: Normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 80, 6571–6575.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Austin, R. H., Beeson, K. W., Eisenstein, L., Frauenfelder, H. and Gunsalus, I. C. (1975). Dynamics of ligand binding to myoglobin. Biochemistry 14, 5355–5373.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Elber, R. and Karplus, M. (1987). Multiple conformational states of proteins: A molecular dynamics analysis of myoglobin. Science 235, 318–321.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Tirion, M. M. (1996). Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Physical Review Letters 77, 1905–1908.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Tama, F. and Sanejouand, Y. H. (2001). Conformational change of proteins arising from normal mode calculations. Protein Engineering 14, 1–6.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Garcia, A. E. (1992). Large-amplitude nonlinear motions in proteins. Phys. Rev. Lett. 68, 2696–2699.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Amadei, A., Linssen, A. B. M. and Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins: Struct. Funct. Genet. 17, 412–425.

    Article  CAS  Google Scholar 

  10. 10. Kitao, A., Hirata, F. and Go, N. (1991). The effects of solvent on the conformation and the collective motions of protein: normal mode analysis and molecular dynamics simulations of melittin in water and in vacuum. J. Chem. Phys. 158, 447–472.

    Article  CAS  Google Scholar 

  11. 11. Grubmüller, H. (1995). Predicting slow structural transitions in macromolecular systems: Conformational flooding. Phys. Rev. E. 52, 2893–2906.

    Article  Google Scholar 

  12. 12. Amadei, A., Linssen, A. B. M., de Groot, B. L., van Aalten, D. M. F. and Berendsen, H. J. C. (1996). An efficient method for sampling the essential subspace of proteins. J. Biom. Str. Dyn. 13, 615–626.

    CAS  Google Scholar 

  13. 13. de Groot, B. L., Amadei, A., van Aalten, D. M. F. and Berendsen, H. J. C. (1996). Towards an exhaustive sampling of the configurational spaces of the two forms of the peptide hormone guanylin. J. Biomol. Str. Dyn. 13, 741–751.

    Google Scholar 

  14. 14. de Groot, B. L., Amadei, A., Scheek, R. M., van Nuland, N. A. J. and Berendsen, H. J. C. (1996). An extended sampling of the configurational space of HPr from E. coli. Proteins: Struct. Funct. Genet. 26, 314–322.

    Article  Google Scholar 

  15. 15. Hayward, S., Kitao, A. and Go, N. (1995). Harmonicity and anharmonicity in protein dynamics: a normal modes and principal component analysis. Proteins: Struct. Funct. Genet. 23, 177–186.

    Article  CAS  Google Scholar 

  16. 16. Kitao, A., Hayward, S. and Go, N. (1998). Energy landscape of a native protein: jumping-among-minima model. Proteins: Struct. Funct. Genet. 33, 496–517.

    Article  CAS  Google Scholar 

  17. 17. Amadei, A., de Groot, B. L., Ceruso, M. A., Paci, M., Nola, A. D. and Berendsen, H. J. C. (1999). A kinetic model for the internal motions of proteins: Diffusion between multiple harmonic wells. Proteins: Struct. Funct. Genet. 35, 283–292.

    Article  CAS  Google Scholar 

  18. 18. Kitao, A. and Go, N. (1999). Investigating protein dynamics in collective coordinate space. Curr. Opin. Struct. Biol. 9, 143–281.

    Article  Google Scholar 

  19. 19. Kitao, A., Hayward, S. and Go, N. (1994). Comparison of normal mode analyses on a small globular protein in dihedral angle space and Cartesian coordinate space. Biophysical Chemistry 52, 107–114.

    Article  CAS  PubMed  Google Scholar 

  20. 20. Tirion, M. M. and ben-Avraham, D. (1993). Normal mode analysis of G-actin. Journal of Molecular Biology 230, 186–195.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Hayward, S. (2001). Normal mode analysis of biological molecules. In Computational Biochemistry and Biophysics (Becker, O. M., Mackerell Jr, A. D., Roux, B. & Watanabe, M., eds.), pp. 153–168. Marcel Dekker Inc, New York.

    Google Scholar 

  22. 22. Go, N. (1990). A theorem on amplitudes of thermal atomic fluctuations in large molecules assuming specific conformations calculated by normal mode analysis. Biophysical Chemistry 35, 105–112.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Marques, O. and Sanejouand, Y.-H. (1995). Hinge-bending motion in citrate synthase arising from normal mode calculations. Proteins 23, 557–560.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Chennubhotla, C., Rader, A. J., Yang, L. W. and Bahar, I. (2005). Elastic network models for understanding biomolecular machinery: From enzymes to supramolecular assemblies. Physical Biology 2, S173–S180.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Bahar, I. and Rader, A. J. (2005). Coarse-grained normal mode analysis in structural biology. Current Opinion in Structural Biology 15, 586–592.

    Article  CAS  PubMed  Google Scholar 

  26. 26. van Aalten, D. M. F., de Groot, B. L., Berendsen, H. J. C., Findlay, J. B. C. and Amadei, A. (1997). A comparison of techniques for calculating protein essential dynamics. J. Comp. Chem. 18, 169–181.

    Article  Google Scholar 

  27. 27. van Aalten, D. M. F., Conn, D. A., de Groot, B. L., Findlay, J. B. C., Berendsen, H. J. C. and Amadei, A. (1997). Protein dynamics derived from clusters of crystal structures. Biophys. J. 73, 2891–2896.

    Article  PubMed  Google Scholar 

  28. 28. de Groot, B. L., Hayward, S., Aalten, D. M. F. v., Amadei, A. and Berendsen, H. J. C. (1998). Domain motions in bacteriophage T4 lysozyme; a comparison between molecular dynamics and crystallographic data. Proteins: Struct. Funct. Genet. 31, 116–127.

    Article  Google Scholar 

  29. 29. de Groot, B. L., Vriend, G. and Berendsen, H. J. C. (1999). Conformational changes in the chaperonin GroEL: New insights into the allosteric mechanism. J. Mol. Biol. 286, 1241–1249.

    Article  PubMed  Google Scholar 

  30. 30. Abseher, R., Horstink, L., Hilbers, C. W. and Nilges, M. (1998). Essential spaces defined by NMR structure ensembles and molecular dynamics simulation show significant overlap. Proteins: Struct. Funct. Genet. 31, 370–382.

    Article  CAS  Google Scholar 

  31. 31. Qian, B., Ortiz, A. R. and Baker, D. (2004). Improvement of comparative model accuracy by free-energy optimization along principal components of natural structural variation. Proc. Natl. Acad. Sci. USA 101, 15346–15351.

    Article  CAS  PubMed  Google Scholar 

  32. 32. Balsera, M. A., Wriggers, W., Oono, Y. and Schulten, K. (1996). Principal component analysis and long time protein dynamics. J. Phys. Chem. 100, 2567–2572.

    Article  CAS  Google Scholar 

  33. 33. Clarage, J. B., Romo, T., Andrews, B. K., Pettitt, B. M. and Jr., G. N. P. (1995). A sampling problem in molecular dynamics simulations of macromolecules. Proc. Natl. Acad. Sci. USA 92, 3288–3292.

    Article  CAS  PubMed  Google Scholar 

  34. 34. de Groot, B. L., van Aalten, D. M. F., Amadei, A. and Berendsen, H. J. C. (1996). The consistency of large concerted motions in proteins in Molecular Dynamics simulations. Biophys. J. 71, 1707–1713.

    Article  PubMed  Google Scholar 

  35. 35. Amadei, A., Ceruso, M. A. and Nola, A. D. (1999). On the convergence of the conforma-tional coordinates basis set obtained by the essential dynamics analysis of proteins' molecular dynamics simulations. Proteins: Struct. Funct. Genet. 36, 419–424.

    Article  CAS  Google Scholar 

  36. 36. Hess, B. (2000). Similarities between principal components of protein dynamics and random diffusion. Phys. Rev. E 62, 8438–8448.

    Article  CAS  Google Scholar 

  37. 37. Hess, B. (2002). Convergence of sampling in protein simulations. Phys. Rev. E 65, 031910.

    Article  Google Scholar 

  38. 38. van Aalten, D. M. F., Findlay, J. B. C., Amadei, A. and Berendsen, H. J. C. (1995). Essential dynamics of the cellular retinol binding protein—evidence for ligand induced conformational changes. Prot. Eng. 8, 1129–1136.

    Article  Google Scholar 

  39. 39. Laio, A. and Parrinello, M. (2002). Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99, 12562–12566.

    Article  CAS  PubMed  Google Scholar 

  40. 40. Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., Debolt, S., Ferguson, D., Seibel, G. and Kollman, P. (1995). Amber, a package of computer-programs for applying molecular mechanics, normal-mode analysis, molecular-dynamics and free-energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications 91, 1–41.

    Article  CAS  Google Scholar 

  41. Amberteam. (2004). Amber 8 users' manual.

    Google Scholar 

  42. 42. Tama, F., Valle, M., Frank, J. and Brooks, C. L. (2003). Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc. Natl. Acad. Sci. USA 100, 9319–9323.

    Article  CAS  PubMed  Google Scholar 

  43. 43. Mu, Y., Nguyen, P. H. and Stock, G. (2005). Energy landscape of a small peptide revealed by dihedral angle principal component analysis. Proteins: Structure, Function, and Bioinformat-ics 58, 45–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Akio Kitao and Dr. Atsushi Matsumoto for helpful discussions, and to Oliver Lange and Helmut Grubmüller for kindly providing Fig. 4.

Author information

Authors and Affiliations

Authors

Editor information

Andreas Kukol

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hayward, S., de Groot, B.L. (2008). Normal Modes and Essential Dynamics. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods Molecular Biology™, vol 443. Humana Press. https://doi.org/10.1007/978-1-59745-177-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-177-2_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-864-5

  • Online ISBN: 978-1-59745-177-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics