Skip to main content

Monte Carlo Simulations

  • Protocol
Molecular Modeling of Proteins

Part of the book series: Methods Molecular Biology™ ((MIMB,volume 443))

Summary

A description of Monte Carlo methods for simulation of proteins is given. Advantages and disadvantages of the Monte Carlo approach are presented. The theoretical basis for calculating equilibrium properties of biological molecules by the Monte Carlo method is presented. Some of the standard and some of the more recent ways of performing Monte Carlo on proteins are presented. A discussion of the estimation of errors in properties calculated by Monte Carlo is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Hu, J., Ma, A., and Dinner, A. R. (2006) Monte Carlo simulations of biomolecules: The MC module in CHARMM. J. Comput. Chem. 27, 203–216.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Manousiouthakis, V. I. and Deem, M. W. (1999) Strict detailed balance is unnecessary in Monte Carlo simulation. J. Chem. Phys. 110, 2753–2756.

    Article  CAS  Google Scholar 

  3. 3. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. N., and Teller, E. (1953) Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092.

    Article  CAS  Google Scholar 

  4. 4. Metropolis, N. (1987) The beginning of the Monte Carlo method. Los Alamos Science, 12, 125–130.

    Google Scholar 

  5. 5. Frenkel, D. and Smit, B. (2002) Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, San Diego, CA.

    Google Scholar 

  6. 6. Allen, M. P. and Tildesley, D. J. (1987) Computer Simulation of Liquids. Clarendon Press, Oxford.

    Google Scholar 

  7. 7. Siepmann, J. I. and Frenkel, D. (1992) Configurational-bias Monte Carlo: A new sampling scheme for flexible chains. Mol. Phys. 75, 59–70.

    Article  CAS  Google Scholar 

  8. 8. Deem, M. W. and Bader, J. S. (1996) A configurational bias Monte Carlo method for linear and cyclic peptides. Mol. Phys. 87, 1245–1260.

    Article  CAS  Google Scholar 

  9. 9. Dodd, L. R., Boone, T. D., and Theodorou, D. N. (1993) A concerted rotation algorithm for atomistic Monte Carlo simulation of polymer melts and glasses. Mol. Phys. 78, 961–996.

    Article  CAS  Google Scholar 

  10. 10. Mavrantzas, V. G., Boone, T. D., Zevropoulou, E., and Theodorou, D. N. (1999) End-bridging Monte Carlo: A fast algorithm for atomistic simulation of condensed phases of long polymer chains. Macromolecules 32, 5072–5096.

    Article  CAS  Google Scholar 

  11. 11. Wu, M. G. and Deem, M. W. (1999) Efficient Monte Carlo methods for cyclic peptides. Mol. Phys. 97, 559–580.

    Article  CAS  Google Scholar 

  12. 12. Wu, M. G. and Deem, M. W. (1999) Analytical rebridging Monte Carlo: Application to cis/trans isomerization in proline-containing, cyclic peptides. J. Chem. Phys. 111, 6625–6632.

    Article  CAS  Google Scholar 

  13. 13. Betancourt, M. R. (2005) Efficient Monte Carlo moves for polypeptide simulations. J. Chem. Phys. 123, 174905.

    Article  PubMed  Google Scholar 

  14. 14. Duane, S., Kennedy, A., Pendleton, B. J., and Roweth, D. (1987) Hybrid Monte Carlo. Phys. Rev. Lett. 195, 216–222.

    CAS  Google Scholar 

  15. 15. Mehlig, B., Heermann, D. W., and Forrest, B. M. (1992) Hybrid Monte Carlo method for condensed matter systems. Phys. Rev. B 45, 679–685.

    Article  Google Scholar 

  16. 16. Tuckerman, M. E., Berne, B. J., and Martyna, G. J. (1992) Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97, 1990–2001.

    Article  CAS  Google Scholar 

  17. 17. Geyer, C. J. and Thompson, E. A. (1995) Annealing Markov-Chain Monte Carlo with applications to ancestral inference, J. Am. Stat. Assn. 90, 909–920.

    Article  Google Scholar 

  18. 18. Kone, A. and Kofke, D. A. (2005) Selection of temperature intervals for parallel tempering simulations, J. Chem. Phys. 122, 206101.

    Article  PubMed  Google Scholar 

  19. 19. Rathore, N., Chopra, M., and de Pablo, J. J. (2005) Optimal allocation of replicas in parallel tempering simulations, J. Chem. Phys. 122, 024111.

    Article  PubMed  Google Scholar 

  20. Katzgraber, H. G., Trebst, S., Huse, D. A., and Troyer, M. (2006) Feedback-optimized parallel tempering Monte Carlo, J. Stat. Mech.: Exp. & Theory P03018.

    Google Scholar 

  21. 21. Earl, D. J. and Deem, M. W. (2004) Optimal allocation of replicas to processors in parallel tempering simulations. J. Phys. Chem. B 108, 6844–6849.

    Article  CAS  Google Scholar 

  22. 22. Earl, D. J. and Deem, M. W. (2005) Parallel tempering: theory, applications, and new perspectives, Phys. Chem. Chem. Phys. 7, 3910–3916.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Wang, F. and Landau, D. P. (2001) Efficient, multiple-range random walk algorithm to calculate the density of states, Phys. Rev. Lett. 86, 2050–2053.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Earl, D. J. and Deem, M. W. (2005) Markov chains of infinite order and asymptotic satisfaction of balance: Application to the adaptive integration method, J. Phys. Chem. B 109 , 6701–6704.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Rathore, N., Knotts IV, T. A., and de Pablo, J. J. (2003) Configurational temperature density of states simulations of proteins, Biophys. J. 85, 3963–3968.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Bradley, P., Misura, K. M. S., and Baker, D. (2005) Toward high-resolution de novo structure prediction for small proteins, Science 309, 1868–1871.

    Article  CAS  PubMed  Google Scholar 

  27. 27. Meiler, J. and Baker, D. (2003) Rapid protein fold determination using unassigned NMR data, Proc. Natl. Acad. Sci. USA 100, 15404–15409.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Yang, X. and Saven, J. G. (2005) Computational methods for protein design sequence variability: biased Monte Carlo and replica exchange, Chem. Phys. Lett. 401, 205–210.

    Article  CAS  Google Scholar 

  29. http://www.ccl.net/cca/software/SOURCES/FORTRAN/allen-tildesley-book/index.shtml

  30. http://molsim.chem.uva.nl/frenkel smit/index.html

  31. http://www.mwdeem.rice.edu/rebridge/

  32. http://fulcrum.physbio.mssm.edu/~mezei/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas Kukol

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Earl, D.J., Deem, M.W. (2008). Monte Carlo Simulations. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods Molecular Biology™, vol 443. Humana Press. https://doi.org/10.1007/978-1-59745-177-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-177-2_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-864-5

  • Online ISBN: 978-1-59745-177-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics