Skip to main content

Protein Folding and Unfolding by All-Atom Molecular Dynamics Simulations

  • Protocol
Molecular Modeling of Proteins

Part of the book series: Methods Molecular Biology™ ((MIMB,volume 443))

Summary

Computational protein folding can be classified into pathway and sampling approaches. Here, we use the AMBER simulation package as an example to illustrate the protocols for all-atom molecular simulations of protein folding, including system setup, simulation, and analysis. We introduced two traditional pathway approaches: ab inito folding and high-temperature unfolding. The popular replica exchange method was chosen to represent sampling approaches. Our emphasis is placed on the analysis of the simulation trajectories, and some in-depth discussions are provided for commonly encountered problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Karplus, M., The Levinthal paradox: yesterday and today. Fold. Des., 1997. 2(4): p. S69–75.

    Article  CAS  PubMed  Google Scholar 

  2. 2. Dill, K.A. and H.S. Chan, From Levinthal to pathways to funnels. Nat. Struct. Biol., 1997. 4(1): p. 10–19.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Ballew, R.M., J. Sabelko, and M. Gruebele, Direct observation of fast protein folding: The initial collapse of apomyoglobin. Proc. Natl. Acad. Sci. USA, 1996. 93: p. 5759–5764.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Roder, H., K. Maki, H. Cheng, and M.C. Shastry, Rapid mixing methods for exploring the kinetics of protein folding. Methods, 2004. 34(1): p. 15–27.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Roder, H., K. Maki, and H. Cheng, Early events in protein folding explored by rapid mixing methods. Chem. Rev., 2006. 106(5): p. 1836–1861.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Eftink, M.R. and M.C. Shastry, Fluorescence methods for studying kinetics of protein-folding reactions. Methods Enzymol., 1997. 278: p. 258–286.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Zeeb, M. and J. Balbach, NMR spectroscopic characterization of millisecond protein folding by transverse relaxation dispersion measurements. J. Am. Chem. Soc., 2005. 127(38): p. 13207–13212.

    Article  CAS  Google Scholar 

  8. 8. Pollack, L., M.W. Tate, A.C. Finnefrock, C. Kalidas, S. Trotter, N.C. Darnton, L. Lurio, R.H. Austin, C.A. Batt, S.M. Gruner, and S.G. Mochrie, Time resolved collapse of a folding protein observed with small angle x-ray scattering. Phys. Rev. Lett., 2001. 86(21): p. 4962–4965.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Dinner, A.R. and M. Karplus, Is protein unfolding the reverse of protein folding? A lattice simulation analysis. J. Mol. Biol., 1999. 292(2): p. 403–419.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Socci, N.D., J.N. Onuchic, and P.G. Wolynes, Stretching lattice models of protein folding. Proc. Natl. Acad. Sci. USA, 1999. 96(5): p. 2031–2035.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Paci, E., M. Vendruscolo, and M. Karplus, Validity of Go models: comparison with a solvent-shielded empirical energy decomposition. Biophys. J., 2002. 83(6): p. 3032–3038.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Kubelka, J., J. Hofrichter, and W.A. Eaton, The protein folding ‘speed limit’. Curr. Opin. Struct. Biol., 2004. 14(1): p. 76–88.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Fersht, A.R. and V. Daggett, Protein folding and unfolding at atomic resolution. Cell, 2002. 108(4): p. 573–582.

    Article  CAS  PubMed  Google Scholar 

  14. 14. Rathore, N., Q. Yan, and J.J. De Pablo, Molecular simulation of the reversible mechanical unfolding of proteins. J. Chem. Phys., 2004. 120(12): p. 5781–5788.

    Article  CAS  PubMed  Google Scholar 

  15. 15. Ferrara, P., J. Apostolakis, and A. Caflisch, Computer simulations of protein folding by targeted molecular dynamics. Proteins, 2000. 39(3): p. 252–260.

    Article  CAS  PubMed  Google Scholar 

  16. 16. Wu, X., S. Wang, and B.R. Brooks, Direct observation of the folding and unfolding of a beta-hairpin in explicit water through computer simulation. J. Am. Chem. Soc., 2002. 124(19): p. 5282–5283.

    Article  CAS  PubMed  Google Scholar 

  17. 17. Mitsutake, A., Y. Sugita, and Y. Okamoto, Generalized-ensemble algorithms for molecular simulations of biopolymers. Biopolymers, 2001. 60(2): p. 96–123.

    Article  CAS  PubMed  Google Scholar 

  18. 18. Jang, S., E. Kim, and Y. Pak, Free energy surfaces of miniproteins with a betabetaalpha motif: replica exchange molecular dynamics simulation with an implicit solvation model. Proteins, 2006. 62(3): p. 6663–6671.

    Google Scholar 

  19. 19. Nguyen, P.H., G. Stock, E. Mittag, C.K. Hu, and M.S. Li, Free energy landscape and folding mechanism of a beta-hairpin in explicit water: a replica exchange molecular dynamics study. Proteins, 2005. 61(4): p. 795–808.

    Article  CAS  PubMed  Google Scholar 

  20. 20. Roe, D.R., V. Hornak, and C. Simmerling, Folding cooperativity in a three-stranded beta-sheet model. J. Mol. Biol., 2005. 352(2): p. 370–381.

    Article  CAS  PubMed  Google Scholar 

  21. 21. Zhou, R., Trp-cage: folding free energy landscape in explicit water. Proc. Natl. Acad. Sci. USA, 2003. 100(23): p. 13280–13285.

    Article  CAS  PubMed  Google Scholar 

  22. 22. Sheinerman, F.B. and C.L. Brooks, 3rd, Calculations on folding of segment B1 of streptococcal protein G. J. Mol. Biol., 1998. 278(2): p. 439–456.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Pande, V.S., I. Baker, J. Chapman, S.P. Elmer, S. Khaliq, S.M. Larson, Y.M. Rhee, M.R. Shirts, C.D. Snow, E.J. Sorin, and B. Zagrovic, Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. Biopolymers, 2003. 68(1): p. 91–109.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Dobson, C.M. and M. Karplus, The fundamentals of protein folding: bringing together theory and experiment. Curr. Opin. Struct. Biol., 1999. 9(1): p. 92–101.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Onuchic, J.N. and P.G. Wolynes, Theory of protein folding. Curr. Opin. Struct. Biol., 2004. 14(1): p. 70–75.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Chan, H.S., S. Bromberg, and K.A. Dill, Models of cooperativity in protein folding. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1995. 348(1323): p. 61–70.

    Article  CAS  PubMed  Google Scholar 

  27. 27. Baldwin, R.L., Intermediates in protein folding reactions and the mechanism of protein folding. Annu. Rev. Biochem., 1975. 44: p. 453–475.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Karplus, M. and D.L. Weaver, Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci., 1994. 3(4): p. 650–668.

    Article  CAS  PubMed  Google Scholar 

  29. 29. Fersht, A.R., Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications. Proc. Natl. Acad. Sci. USA, 1995. 92(24): p. 10869–10873.

    Article  CAS  PubMed  Google Scholar 

  30. 30. Daggett, V. and A.R. Fersht, Is there a unifying mechanism for protein folding? Trends Biochem. Sci., 2003. 28(1): p. 18–25.

    Article  CAS  PubMed  Google Scholar 

  31. 31. Onuchic, J.N., Z. Luthey-Schulten, and P.G. Wolynes, Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem., 1997. 48: p. 545–600.

    Article  CAS  PubMed  Google Scholar 

  32. 32. Wolynes, P.G., Energy landscapes and solved protein-folding problems. Philos. Transact. A Math. Phys. Eng. Sci., 2005. 363(1827): p. 453–464; discussion 464–467.

    Article  CAS  PubMed  Google Scholar 

  33. 33. Shea, J.E. and C.L. Brooks, 3rd, From folding theories to folding proteins: a review and assessment of simulation studies of protein folding and unfolding. Annu. Rev. Phys. Chem., 2001. 52: p. 499–535.

    Article  CAS  PubMed  Google Scholar 

  34. 34. Daggett, V. and A. Fersht, The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol., 2003. 4(6): p. 497–502.

    Article  CAS  PubMed  Google Scholar 

  35. 35. Mitsutake, A. and Y. Okamoto, Replica-exchange extensions of simulated tempering method. J. Chem. Phys., 2004. 121(6): p. 2491–2504.

    Article  CAS  PubMed  Google Scholar 

  36. 36. Okamoto, Y., Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. J. Mol. Graph. Model., 2004. 22(5): p. 425–439.

    Article  CAS  PubMed  Google Scholar 

  37. 37. Case, D.A., et al., AMBER 8. 2004: University of California, San Francisco.

    Google Scholar 

  38. 38. Brooks, B.R., R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus, Charmm—a Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem., 1983. 4(2): p. 187–217.

    Article  CAS  Google Scholar 

  39. 39. Van Der Spoel, D., E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, and H.J. Berendsen, GRO-MACS: fast, flexible, and free. J. Comput. Chem., 2005. 26(16): p. 1701–1718.

    Article  Google Scholar 

  40. 40. Christen, M., P.H. Hunenberger, D. Bakowies, R. Baron, R. Burgi, D.P. Geerke, T.N. Heinz, M.A. Kastenholz, V. Krautler, C. Oostenbrink, C. Peter, D. Trzesniak, and W.F. van Gunsteren, The GROMOS software for biomolecular simulation: GROMOS05. J. Comput. Chem., 2005. 26(16): p. 1719–1751.

    Article  CAS  PubMed  Google Scholar 

  41. 41. Tiradorives, J. and W.L. Jorgensen, The Opls Force-Field for Organic and Biomolecular Systems. Abstr. Pap. Am. Chem. S., 1992. 204: p. 43–Comp.

    Google Scholar 

  42. 42. Chen, J.H., W.P. Im, and C.L. Brooks, Balancing solvation and intramolecular interactions: Toward a consistent generalized Born force field. J. Amer. Chem. Soc., 2006. 128(11): p. 3728–3736.

    Article  CAS  Google Scholar 

  43. 43. Zhu, J., E. Alexov, and B. Honig, Comparative study of generalized Born models: Born radii and peptide folding. J. Phys. Chem. B, 2005. 109(7): p. 3008–3022.

    Article  CAS  PubMed  Google Scholar 

  44. 44. Allwright, J.C., Conjugate gradient versus steepest descent. J. Optimiz. Theory App., 1976. 20(1): p. 129–134.

    Article  Google Scholar 

  45. 45. Olson, C.F., Parallel algorithms for hierarchical-clustering. Parallel Comput., 1995. 21(8): p. 1313–1325.

    Article  Google Scholar 

  46. 46. Krivov, S.V. and M. Karplus, Hidden complexity of free energy surfaces for peptide (protein) folding. Proc. Natl. Acad. Sci. USA, 2004. 101(41): p. 14766–14770.

    Article  CAS  PubMed  Google Scholar 

  47. 47. Richmond, T.J., Solvent accessible surface-area and excluded volume in proteins—analytical equations for overlapping spheres and implications for the hydrophobic effect. J. Mol. Biol., 1984. 178(1): p. 63–89.

    Article  CAS  PubMed  Google Scholar 

  48. 48. Griffiths-Jones, S.R., AJ. Maynard, and M.S. Searle, Dissecting the stability of a beta-hairpin peptide that folds in water: NMR and molecular dynamics analysis of the beta-turn and beta-strand contributions to folding. J. Mol. Biol., 1999. 292(5): p. 1051–1069.

    Article  CAS  PubMed  Google Scholar 

  49. 49. Creamer, T.P., Conformational entropy in protein folding. A guide to estimating conformational entropy via modeling and computation. Methods Mol. Biol., 2001. 168: p. 117–132.

    CAS  PubMed  Google Scholar 

  50. 50. Mu, Y., P.H. Nguyen, and G. Stock, Energy landscape of a small peptide revealed by dihedral angle principal component analysis. Proteins, 2005. 58(1): p. 45–52.

    Article  CAS  PubMed  Google Scholar 

  51. 51. Zhang, W, C. Wu, and Y. Duan, Convergence of replica exchange molecular dynamics. J. Chem. Phys., 2005. 123(15): p. 154105.

    Article  PubMed  Google Scholar 

  52. 52. Garcia, A.E. and J.N. Onuchic, Folding a protein in a computer: an atomic description of the folding/unfolding of protein A. Proc. Natl. Acad. Sci. USA, 2003. 100(24): p. 13898–13903.

    Article  CAS  PubMed  Google Scholar 

  53. 53. Duan, Y, C. Wu, S. Chowdhury, M.C. Lee, G Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Kollman, A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem., 2003. 24(16): p. 1999–2012.

    Article  CAS  PubMed  Google Scholar 

  54. 54. Patel, S. and C.L. Brooks, CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations. J. Comput. Chem., 2004. 25(1): p. 1–15.

    Article  CAS  PubMed  Google Scholar 

  55. 55. Patel, S., A.D. Mackerell, and C.L. Brooks, CHARMM fluctuating charge force field for proteins: II—Protein/solvent properties from molecular dynamics simulations using a nonadditive electrostatic model. J. Comput. Chem., 2004. 25(12): p. 1504–1514.

    Article  CAS  PubMed  Google Scholar 

  56. 56. Oostenbrink, C, A. Villa, A.E. Mark, and W.F. van Gunsteren, A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and53A6. J. Comput. Chem., 2004. 25(13): p. 1656–1676.

    Article  CAS  PubMed  Google Scholar 

  57. 57. Oostenbrink, C, T.A. Soares, N.F. van der Vegt, and W.F. van Gunsteren, Validation of the 53A6 GROMOS force field. Eur. Biophys. J., 2005. 34(4): p. 273–284.

    Article  CAS  PubMed  Google Scholar 

  58. 58. Damm, W, T.A. Halgren, R.B. Murphy, A.M. Smondyrev, R.A. Friesner, and WL. Jorgensen, OPLS_2002: A new version of the OPLS-AA force field. Abstr. Pap. Am. Chem. S., 2002. 224: p. U471–U471.

    Google Scholar 

  59. 59. Mu, Y.G., D.S. Kosov, and G. Stock, Conformational dynamics oftrialanine in water. 2. Comparison of AMBER, CHARMM, GROMOS, and OPLS force fields to NMR and infrared experiments. J. Phys. Chem. B, 2003. 107(21): p. 5064–5073.

    Article  CAS  Google Scholar 

  60. 60. Roterman, I.K., K.D. Gibson, and H.A. Scheraga, A comparison of the Charmm, Amber and Ecepp potentials for peptides. 1. Conformational predictions for the tandemly repeated peptide (asn-ala-asn-pro)9. J. Biomol. Struct. & Dyn., 1989. 7(3): p. 391–419.

    CAS  Google Scholar 

  61. 61. Roterman, I.K., M.H. Lambert, K.D. Gibson, and H.A. Scheraga, A comparison of the Charmm, Amber and Ecepp potentials for peptides. 2. Phi-psi maps for N-acetyl alanine Ń-methyl amide—comparisons, contrasts and simple experimental tests. J. Biomol. Struct. & Dyn., 1989. 7(3): p. 421–453.

    CAS  Google Scholar 

  62. 62. Zhou, R., Free energy landscape of protein folding in water: explicit vs. implicit solvent. Proteins, 2003. 53(2): p. 148–161.

    Article  CAS  PubMed  Google Scholar 

  63. 63. Duan, Y and PA. Kollman, Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science, 1998. 282(5389): p. 740–744.

    Article  CAS  PubMed  Google Scholar 

  64. 64. Ryckaert, J.P., G Ciccotti, and H.J.C. Berendsen, Numerical-integration of cartesian equations of motion of a system with constraints—molecular-dynamics of N-alkanes. J. Comput. Phys., 1977. 23(3): p. 327–341.

    Article  CAS  Google Scholar 

  65. 65. Humphrey, W, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics. J. Mol. Graphics, 1996. 14(1): p. 33–38.

    Article  CAS  Google Scholar 

  66. 66. DeLano, WL. and J.W Lam, PyMOL: A communications tool for computational models. Abstr. Pap. Am. Chem. S., 2005. 230: p. U1371–U1372.

    Google Scholar 

  67. 67. Sayle, R.A. and E.J. Milnerwhite, Rasmol—biomolecular graphics for all. Trends Biochem. Sci., 1995. 20(9): p. 374–376.

    Article  CAS  PubMed  Google Scholar 

  68. 68. Thompson, J.B., H.G Hansma, PK. Hansma, and K.W Plaxco, The backbone conformational entropy of protein folding: experimental measures from atomic force microscopy. J. Mol. Biol., 2002. 322(3): p. 645–652.

    Article  CAS  PubMed  Google Scholar 

  69. 69. Doig, A.J. and M.J. Sternberg, Side-chain conformational entropy in protein folding. Protein Sci., 1995. 4(11): p. 2247–2251.

    Article  CAS  PubMed  Google Scholar 

  70. 70. Pal, D. and P. Chakrabarti, Estimates of the loss of main-chain conformational entropy of different residues on protein folding. Proteins, 1999. 36(3): p. 332–339.

    Article  CAS  PubMed  Google Scholar 

  71. 71. Lei, H.X. and Y. Duan, The role of plastic beta-hairpin and weak hydrophobic core in the stability and unfolding of a full sequence design protein. J. Chem. Phys., 2004. 121(23): p. 12104–12111.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the National Institutes of Health (NIH; GM64458 and GM67168 to YD).

Author information

Authors and Affiliations

Authors

Editor information

Andreas Kukol

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lei, H., Duan, Y. (2008). Protein Folding and Unfolding by All-Atom Molecular Dynamics Simulations. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods Molecular Biology™, vol 443. Humana Press. https://doi.org/10.1007/978-1-59745-177-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-177-2_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-864-5

  • Online ISBN: 978-1-59745-177-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics