Skip to main content

Rapid, Controlled and Intensive Lentiviral Vector-Based RNAi

  • Protocol

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 485))

Abstract

RNA interference (RNAi) is a powerful technology for studying the functional significance of genes. The technique is more accessible than gene knockout methods, and is directly applicable to diverse human cells. However, inadequate reductions in target mRNAs can reduce the utility of RNAi and insufficiently rigorous controls can lead to spurious conclusions. Optimally combining pol III promoters to drive short hairpin RNA expression with the gene transfer capabilities of lentiviral vectors has led to ways to perform especially effective and convincing RNAi, which we review here. We detail practical methods, including one-step vector construction. Deep, stable knockdowns to trace mRNA levels are readily achieved in T cell lines, which can then be subjected to comprehensive HIV challenge studies. Rescue of preknockdown phenotype by RNAi-resistant gene re-expression is a critical validating step. The methods can also be applied to primary T cells and macrophages. The time from thinking of a target to initial data read-out can be a few weeks.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Llano, M., Saenz, D. T., Meehan, A., et al. (2006) An Essential Role for LEDGF/p75 in HIV Integration. Science 314, 461–464.

    Article  CAS  PubMed  Google Scholar 

  2. Fire, A., Xu, S., Montgomery, M.K., et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  CAS  PubMed  Google Scholar 

  3. Hamilton, A. J., Baulcombe, D. C. (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952.

    Article  CAS  PubMed  Google Scholar 

  4. Zamore, P. D., Tuschl, T., Sharp, P. A., et al. (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33.

    Article  CAS  PubMed  Google Scholar 

  5. Hammond, S. M., Bernstein, E., Beach, D., et al. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

    Article  CAS  PubMed  Google Scholar 

  6. Hammond, S. M., Caudy, A. A., Hannon, G. J. (2001) Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2, 110–119.

    Article  CAS  PubMed  Google Scholar 

  7. Bernstein, E., Caudy, A. A., Hammond, S. M., et al. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  CAS  PubMed  Google Scholar 

  8. Rivas, F. V., Tolia, N. H., Song, J. J., et al. (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12, 340–349.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, J., Carmell, M. A., Rivas, F. V., et al. (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441.

    Article  CAS  PubMed  Google Scholar 

  10. Brummelkamp, T. R., Bernards, R., Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.

    Article  CAS  PubMed  Google Scholar 

  11. Paddison, P. J., Caudy, A. A., Bernstein, E., et al. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16, 948–958.

    Article  CAS  PubMed  Google Scholar 

  12. Zeng, Y., Wagner, E. J., Cullen, B.R. (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9, 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  13. Naldini, L., Bloemer, U., Gallay, P., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267.

    Article  CAS  PubMed  Google Scholar 

  14. Poeschla, E., Wong-Staal, F., Looney, D. (1998) Efficient transduction of nondividing cells by feline immunodeficiency virus lentiviral vectors. Nature Medicine 4, 354–357.

    Article  CAS  PubMed  Google Scholar 

  15. Olsen, J. C. (1998) Gene transfer vectors derived from equine infectious anemia virus. Gene Therapy 5, 1481–1487.

    Article  CAS  PubMed  Google Scholar 

  16. Siolas, D., Lerner, C., Burchard, J., et al. (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23, 227–231.

    Article  CAS  PubMed  Google Scholar 

  17. Sledz, C. A., Holko, M., de Veer, M. J., et al. (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5, 834–839.

    Article  CAS  PubMed  Google Scholar 

  18. Reynolds, A., Leake, D., Boese, Q., et al. (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22, 326–330.

    Article  CAS  PubMed  Google Scholar 

  19. Morris, K. V., Rossi, J. J. (2006) Lentiviral-mediated delivery of siRNAs for antiviral therapy. Gene Ther 13, 553–558.

    Article  CAS  PubMed  Google Scholar 

  20. Szulc, J., Wiznerowicz, M., Sauvain, M. O., et al. (2006) A versatile tool for conditional gene expression and knockdown. Nat Methods 3, 109–116.

    Article  CAS  PubMed  Google Scholar 

  21. Wiznerowicz, M., Szulc, J., Trono, D. (2006) Tuning silence: conditional systems for RNA interference. Nat Methods 3, 682–688.

    Article  CAS  PubMed  Google Scholar 

  22. Aagaard, L., Amarzguioui, M., Sun, G., et al. (2007) A facile lentiviral vector system for expression of doxycycline-inducible shRNAs: Knockdown of the Pre-miRNA processing enzyme drosha. Mol Ther 15, 938–945.

    CAS  PubMed  Google Scholar 

  23. Burns, J. C., Friedmann, T., Driever, W., et al. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90, 8033–8037.

    Article  CAS  PubMed  Google Scholar 

  24. Zufferey, R., Nagy, D., Mandel, R. J., et al. (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15, 871–875.

    Article  CAS  PubMed  Google Scholar 

  25. Saenz, D. T., Barraza, R., Loewen, N., et al. (2006) In Rossi, J. and Friedman, T. (eds.), Gene Transfer: A Cold Spring Harbor Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 57–74.

    Google Scholar 

  26. (2003) Whither RNAi? Nat Cell Biol 5, 489–490.

    Google Scholar 

  27. McManus, M. T., Petersen, C. P., Haines, B. B., et al. (2002) Gene silencing using micro-RNA designed hairpins. Rna 8, 842–850.

    Article  CAS  PubMed  Google Scholar 

  28. Stegmeier, F., Hu, G., Rickles, R. J., et al. (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci USA 102, 13212–13217.

    Article  CAS  PubMed  Google Scholar 

  29. An, D. S., Qin, F. X., Auyeung, V. C., et al. (2006) Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther 14, 494–504.

    Article  CAS  PubMed  Google Scholar 

  30. Saenz, D. T., Teo, W., Olsen, J. C., et al. (2005) Restriction of Feline Immunodeficiency Virus by Ref1, LV1 and Primate TRIM5a Proteins. J Virol 79, 15175–15188.

    Article  CAS  PubMed  Google Scholar 

  31. Llano, M., Vanegas, M., Fregoso, O., et al. (2004) LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral pre-integration complexes. J Virol, 78, 9524–9537.

    Article  CAS  PubMed  Google Scholar 

  32. Rose, S. D., Kim, D. H., Amarzguioui, M., et al. (2005) Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 33, 4140–4156.

    Article  CAS  PubMed  Google Scholar 

  33. Amarzguioui, M., Lundberg, P., Cantin, E., et al. (2006) Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat Protoc 1, 508–517.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank I. Kemler for assisting N. G. with pTSINcherryU6 and pTSINcherryU61340 construction and D. T. Saenz and M. Meehan for assistance with multiple aspects of lentiviral vector experiments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Llano, M., Gaznick, N., Poeschla, E.M. (2009). Rapid, Controlled and Intensive Lentiviral Vector-Based RNAi. In: Prasad, V.R., Kalpana, G.V. (eds) HIV Protocols. Methods In Molecular Biology™, vol 485. Humana Press. https://doi.org/10.1007/978-1-59745-170-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-170-3_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-859-1

  • Online ISBN: 978-1-59745-170-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics