Skip to main content

Bacterial Phagosome Acidification Within IFN-γ-Activated Macrophages: Role of Host p47 Immunity-Related GTPases IRGs)

  • Protocol
Autophagosome and Phagosome

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 445))

Summary

Interferon-gamma IFN-γ)–induced remodeling of the bacterial phagosome for pathogen clearance elicits the aid of a new family of GTPases termed the p47 IRGs. Members of this group reside primarily on ER-Golgi membranes before translocating to the nascent phagosome within minutes of bacterial uptake. Recruitment of p47 IRGs coincides with the acquisition of phagosome maturation and autophagy markers as well as enhanced acidification of this organelle. Here we describe a simple spectrofluorometric assay to measure luminal acidification of the bacterial phagosome within intact cells such as macrophages. This method can be applied to study the phagosomal pH pH_pg) of activated cells infected with a variety of infectious microorganisms and the roles played by members of the p47 IRG family in auto)phagolysosome biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nathan, C. F., Murray, H. W., Weibe, M. E., and Rubin, B. Y. (1983) Identification ofinterferon-γ as the lymphokine that activates human macrophage oxidativemetabolism and antimicrobial activity. J. Exp. Med. 158, 670–685.

    Article  CAS  PubMed  Google Scholar 

  2. Nathan, C. F., Prendergast, T. J., Weibe, M. E., et al. (1984) Activation of human macrophages: Comparison of other cytokines with interferon-γ. J. Exp. Med.160, 600–605.

    Article  CAS  PubMed  Google Scholar 

  3. Ehrt, S., Schnappinger, D., Bekiranov, S., et al. (2001) Reprogramming the macrophage transcriptome in response to interferon-γ and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J. Exp. Med. 194, 1123–1139.

    Article  CAS  PubMed  Google Scholar 

  4. MacMicking, J., Xie, Q.-w., and Nathan, C. (1997) Nitric oxide and macrophage function. Ann. Rev. Immunol. 23, 323–350.

    Article  Google Scholar 

  5. Nathan, C. and Shiloh, M.U. (2000) Reactive oxygen and nitrogen intermediates and the relationship between mammalian hosts and microbial pathogens.Proc. NatlAcad. Sci. USA. 97, 8841–8848.

    Article  CAS  Google Scholar 

  6. Skamene, E., Schurr, E., and Gros, P. (1998) Infection genomics: Nramp1 as a major determinant for natural resistance to intracellular infections.Ann. Rev. Med. 49, 275–287.

    Article  CAS  PubMed  Google Scholar 

  7. MacMicking, J. D. (2004) IFN-inducible GTPases and immunity to intracellular-pathogens.Trends Immunol. 25, 601–609.

    Article  CAS  PubMed  Google Scholar 

  8. Taylor, G. S.,Feng, G. C., and Sher, A. (2004) p47 GTPases: Regulators of immunity to intracellular pathogens.Nat. Rev. Immunol. 4, 100–106.

    Article  CAS  PubMed  Google Scholar 

  9. MacMicking, J. D. (2005) Immune control of phagosomal bacteria by p47 GTPases.Curr. Opin. Microbiol. 8, 74–82.

    Article  CAS  PubMed  Google Scholar 

  10. Martens, S. and Howard, J.C. (2006) The IFN-inducible GTPases.Ann. Rev,Cell Dev. Biol. 22, 559–589.

    Article  CAS  Google Scholar 

  11. MacMicking, J. D., Taylor, G. S., and McKinney, J. D. (2003) Immune control of tuberculosis by IFN-γ-inducible LRG-47.Science 302, 654–659.

    Article  CAS  PubMed  Google Scholar 

  12. Gutierrrez, M. G., Master, S. S., Singh, S. B., Taylor, G. S., Colombo,M.I., and Deretic, V. (2004) Autophagy is a defense mechanism inhibiting BCG andMycobacterium tuberculosis survival in infected macrophages. Cell119, 753–766.

    Article  Google Scholar 

  13. Martens, S., Parvanova, I., Zerrahn, J., et al. (2005) Disruption of Toxoplasma gondii parasitophorous vacuoles by the mouse p47-resistance GTPases. PloS Pathog.1, 187–200.

    Article  CAS  Google Scholar 

  14. Ling, Y. M., Shaw, M. H., Ayala, C., et al. (2006) Vauolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J. Exp. Med. 203, 2063–2071.

    Article  CAS  PubMed  Google Scholar 

  15. Singh, S. B., Davis, A. S., Taylor, G. S., and Deretic, V. (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438–1441.

    Article  CAS  PubMed  Google Scholar 

  16. Oh, Y-K. and Straubinger, R. M. (1996) Intracellular fate of Mycobacterium avium: Use of dual-label spectrofluorometry to investigate the influence of bacterial viability and opsonization on phagosomal pH and phagosome-lysosome interaction. Infect. Immun. 64, 319–325.

    CAS  PubMed  Google Scholar 

  17. http://www.probes.invitrogen.com.

  18. Schaible, U. E., Sturgill-Koszycki, S., Schlesinger, P. H., and Russell, D. G. 1998) Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J. Immunol. 160, 1290–1296.

    CAS  PubMed  Google Scholar 

  19. Suzuki, K., Tsuyuguchi, K., Matsumoto, H., Niimi, A., Tanaka, E., and Amitani, R. (2000) Effect of proton pump inhibitor alone or in combination with clathrinomycin on mycobacterial growth in human macrophages. FEMS Microbiol. Lett. 182, 69–72.

    Article  CAS  PubMed  Google Scholar 

  20. Lukacs, G. L., Rotsetin, O. D., and Grinstein, S. (1991) Determinants of the phagosomal pH in macrophages. J. Biol. Chem. 266, 24540–24548.

    CAS  PubMed  Google Scholar 

  21. Hackam, D. J., Rotstein, O. D., Zhang, W., Gruenheid, S., Gros, P., and Grinstein,S. (1998) Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J. Exp. Med. 188, 1351–1364.

    Article  Google Scholar 

  22. Beletskii, A., Cooper, M., Sriraman, P., et al. (2005) High-throughput phagocytosis assay utilizing a pH-sensitive fluorescent dye. BioTechniques 39, 894–897.

    Article  CAS  PubMed  Google Scholar 

  23. Yates, R. M., Hermetter, A., and Russell, D. G. (2005) The kinetics of phagosome maturation as a function of phagosome/lysosome fusion and acquisition of hydrolytic activity. Traffic 8, 413–420.

    Article  Google Scholar 

  24. http://www.moleculardevices.com.

Download references

Acknowledgments

Support of this work has been provided by grants from NIH NIAID (R01 AI068041-01A1), Edward R. Mallinckrodt Foundation (R06152), Searle Foundation Scholars Program (05-F-114), Cancer Research Institute Investigator Award Program, and the W.W. Winchester Foundation.endAcknowledgments

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tiwari, S., MacMicking, J.D. (2008). Bacterial Phagosome Acidification Within IFN-γ-Activated Macrophages: Role of Host p47 Immunity-Related GTPases IRGs). In: Deretic, V. (eds) Autophagosome and Phagosome. Methods in Molecular Biology™, vol 445. Humana Press. https://doi.org/10.1007/978-1-59745-157-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-157-4_26

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-853-9

  • Online ISBN: 978-1-59745-157-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics