Skip to main content

Fractionation of the Coxiella burnetii Parasitophorous Vacuole

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 445))

Summary

Coxiella burnetii is a bacterial obligate intracellular pathogen that replicates within a spacious parasitophorous vacuole (PV) with lysosomal characteristics. The pathogen actively participates in the biogenesis of its PV by synthesizing proteins that mediate vesicular interactions. Both C. burnetii and host factors that regulate PV formation are likely localized to the PV membrane, and their identification would be aided by an efficient method for isolating the C. burnetii vacuole. To this end, we developed a method to separate intact PV from host cell material that relies on fusion of the vacuole with latex bead-containing phagosomes (LBP). Sequestration of latex beads by the C. burnetii PV increases the vacuole’s buoyant density and facilitates its fractionation on a sucrose step gradient. Transmission electron microscopy confirms the isolation of intact PV-containing latex beads from infected MH-S murine alveolar macrophage-like cells. Immunoblotting demonstrates that C. burnetii PV lysates are dramatically enriched for the late endosome/lysosome markers LAMP-1 and LAMP-2 when compared to total host cell lysates. Conversely, PV preparations are devoid of p62 and GM130, markers of the nucleus and Golgi apparatus, respectively, indicating effective separation of the vacuole from these host cell compartments. Two-dimensional gel electrophoresis and immunoblotting reveal distinct protein differences between C. burnetii PV and LBP. Identification of proteins unique to the PV membrane will yield important insight into C. burnetii–host interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Maurin, M. and Raoult, D. (1999) Q fever. Clin. Microbiol. Rev. 12, 518–553.

    CAS  PubMed  Google Scholar 

  2. Stein, A., Louveau, C., Lepidi, H., et al. (2005) Q fever pneumonia: virulence of Coxiella burnetii pathovars in a murine model of aerosol infection. Infect. Immun. 73, 2469–2477.

    Article  CAS  PubMed  Google Scholar 

  3. Heinzen, R. A., Scidmore, M. A., Rockey, D. D. and Hackstadt, T. (1996) Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect. Immun. 64, 796–809.

    CAS  PubMed  Google Scholar 

  4. Oh, Y. K. and Swanson, J. A. (1996) Different fates of phagocytosed particles after delivery into macrophage lysosomes. J. Cell Biol. 132, 585–593.

    Article  CAS  PubMed  Google Scholar 

  5. Howe, D. and Mallavia, L. P. (2000) Coxiella burnetii exhibits morphological change and delays phagolysosomal fusion after internalization by J774A.1 cells. Infect. Immun. 68, 3815–3821.

    Article  CAS  PubMed  Google Scholar 

  6. Romano, P. S., Gutierrez, M. G., Beron, W., Rabinovitch, M. and Colombo, M. I. (2007) The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell. Microbiol. 9, 891–909.

    Article  CAS  PubMed  Google Scholar 

  7. morphological differentiation. J. Bacteriol. 186, 7344–7352.

    Google Scholar 

  8. Voth, D. E. and Heinzen, R. A. (2007) Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell. Microbiol. 4, 829–840.

    Article  Google Scholar 

  9. Howe, D., Melnicakova, J., Barak, I. and Heinzen, R. A. (2003) Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication. Cell. Microbiol. 5, 469–480.

    Article  CAS  PubMed  Google Scholar 

  10. Segal, G., Feldman, M. and Zusman, T. (2005) The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol. Rev. 29, 65–81.

    Article  CAS  PubMed  Google Scholar 

  11. Meresse, S., Steele-Mortimer, O., Moreno, E., Desjardins, M., Finlay, B. and Gorvel, J. P. (1999) Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nat. Cell Biol. 1, 183–188.

    Article  Google Scholar 

  12. Murata, T., Delprato, A., Ingmundson, A., Toomre, D.K., Lambright, D. G. and Roy, C. R. (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat. Cell Biol. 8, 971–977.

    Article  CAS  PubMed  Google Scholar 

  13. Walburger, A., Koul, A., Ferrari, G., et al. (2004) Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304, 1800–1804.

    Article  CAS  PubMed  Google Scholar 

  14. Brumell, J. H., Goosney, D. L. and Finlay, B. B. (2002) SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic 3, 407–415.

    Article  CAS  PubMed  Google Scholar 

  15. Fratti, R. A., Chua, J., Vergne, I. and Deretic, V. (2003) Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl. Acad. Sci. USA 100, 5437–5442.

    Article  CAS  PubMed  Google Scholar 

  16. Via, L. E., Deretic, D., Ulmer, R. J., Hibler, N. S., Huber, L. A. and Deretic, V. (1997) Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol. Chem. 272, 13326–13331.

    Article  CAS  PubMed  Google Scholar 

  17. Ferrari, G., Langen, H., Naito, M. and Pieters, J. (1999) A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97, 435–447.

    Article  CAS  PubMed  Google Scholar 

  18. Mills, S. D. and Finlay, B. B. (1998) Isolation and characterization of Salmonella typhimurium and Yersinia pseudotuberculosis-containing phagosomes from infected mouse macrophages: Y. pseudotuberculosis traffics to terminal lysosomes where they are degraded. Eur. J. Cell Biol. 77, 35–47.

    CAS  PubMed  Google Scholar 

  19. Heinzen, R. A. and Hackstadt, T. (1997) The Chlamydia trachomatis parasitophorous vacuolar membrane is not passively permeable to low-molecular-weight compounds. Infect. Immun. 65, 1088–1094.

    CAS  PubMed  Google Scholar 

  20. Desjardins, M., Huber, L. A., Parton, R. G. and Griffiths, G. (1994) Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J. Cell Biol. 124, 677–688.

    Article  CAS  PubMed  Google Scholar 

  21. Desjardins, M. and Griffiths, G. (2003) Phagocytosis: latex leads the way. Curr. Opin. Cell Biol. 15, 498–503.

    Article  CAS  PubMed  Google Scholar 

  22. Hackstadt, T. (1996) Biosafety concerns and Coxiella burnetii Trends Microbiol. 4, 341–342.

    Article  CAS  PubMed  Google Scholar 

  23. Coleman, S. A., Fischer, E. R., Cockrell, D. C., et al. (2007) Proteome and antigen profiling of Coxiella burnetii developmental forms. Infect. Immun. 76, 290–298.

    Article  Google Scholar 

  24. Luhrmann, A. and Haas, A. (2001) A method to purify bacteria-containing phagosomes from infected macrophages. Methods Cell Sci. 22, 329–341.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Howe, D., Heinzen, R.A. (2008). Fractionation of the Coxiella burnetii Parasitophorous Vacuole. In: Deretic, V. (eds) Autophagosome and Phagosome. Methods in Molecular Biology™, vol 445. Humana Press. https://doi.org/10.1007/978-1-59745-157-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-157-4_25

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-853-9

  • Online ISBN: 978-1-59745-157-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics