Skip to main content

Genetic Modification of Sheep by Nuclear Transfer With Gene-Targeted Somatic Cells

  • Protocol
Nuclear Transfer Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 348))

  • 927 Accesses

Abstract

For many years the lack of germline competent embryonic stem cell lines in livestock meant that the targeted modification of endogenous genes was not possible in these species. The demonstration that livestock could be cloned by nuclear transfer from cultured somatic cells has now provided an alternative route to accomplish gene targeting. This chapter describes protocols for culturing primary sheep fibroblasts, introducing and selecting targeted modifications into them and then using these modified cells in nuclear transfer experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hammer, R. E., Pursel, V. G., Rexroad, C., et al. (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315, 680–683.

    Article  CAS  PubMed  Google Scholar 

  2. Clark, A. J., Bissinger, P., Bullock, D. W., et al. (1994) Chromosomal position effects and the modulation of transgene expression. Reprod Fertil Dev. 6, 589–598.

    Article  CAS  PubMed  Google Scholar 

  3. Hooper, M. L. (1992) Embryonal Stem Cells: Introducing Planned Changes Into the Germline (Evans, H. J., ed). Harwood Academic Publishers, Switzerland.

    Google Scholar 

  4. Stice, S. L. (1998) Opportuities and challenges in domestic animal embryonic stem cell research, in Animal Breeding: Technology for the 21st Century (Clark, A. J., ed.) Harwood Aacademic Press, Switzerland, pp. 64–71.

    Google Scholar 

  5. Wheeler, M. (1994). Development and validation of swine embryonic stem cells: a review. Reprod. Fertil. Dev. 6, 563–568.

    Article  CAS  PubMed  Google Scholar 

  6. Campbell, K. H.S., McWhir, J., Ritchie, W. A., and Wilmut, I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–66.

    Article  CAS  PubMed  Google Scholar 

  7. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H.S. (1997). Viable offspring derived from fetal and adult mammalian cells Nature 385, 810–813.

    Article  CAS  PubMed  Google Scholar 

  8. Te Riele, H., Robanus, M., and Berns, A. (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs Proc. Natl. Acad. Sci. USA 89, 5128–5132.

    Article  Google Scholar 

  9. Deng, C. and Capecchi, M. R. (1992) Reexamination of gene targeting frequency as a function of the extent of homology between the targeting vector and the target locus. Mol. Cell Biol. 12, 3365–3371.

    CAS  PubMed  Google Scholar 

  10. Shulman, M. J., Nissen, L., and Collins, C. (1990) Homologous recombination in hybridoma cells: dependence on time and fragment length. Mol. Cell Biol. 10, 4466–4472.

    CAS  PubMed  Google Scholar 

  11. Thomas, K. R. and Capecchi, M. R. (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 847–580.

    Article  CAS  PubMed  Google Scholar 

  12. Thomas, K. R., Deng, C., and Capecchi, M. R. (1992) High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol. Cell Biol. 12, 2919–2923.

    CAS  PubMed  Google Scholar 

  13. Sedivy, J. M. and Sharp, P. A. (1989) Positive genetic selection for gene disruption in mammalian cells by homologous recombination. Proc. Natl. Acad. Sci. USA 86, 227–231.

    Article  CAS  PubMed  Google Scholar 

  14. Sedivy, J. (1999) Gene targeting in human cells without isogenic DNA. Science 283, 9a.

    Article  Google Scholar 

  15. Jeannotte, L., Ruiz, J. C., and Robertson, E. J. (1991) Low level of Hox1.3 gene expression does not preclude the use of promoterless vectors to generate a targeted gene disruption. off. Mol. Cell Biol. 11, 5578–5585.

    CAS  PubMed  Google Scholar 

  16. Shichiri, M., Hanson, K. D., and Sedivy, J. M. (1993) Effects of c-myc expression on proliferation, quiescence, and the G0 to G1 transition in nontransformed cells. Cell Growth Differ. 4, 93–104.

    CAS  PubMed  Google Scholar 

  17. Mansour, S. L., Thomas, K. R., and Capecchi, M. R. (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352.

    Article  CAS  PubMed  Google Scholar 

  18. Jasin, M. and Berg, P. (1988) Homologous integration in mammalian cells without target gene selection. Genes Dev. 2, 1353–1363.

    Article  CAS  PubMed  Google Scholar 

  19. Yanagawa, Y., Kobayashi, T., Ohnishi, M., et al. (1999) Enrichment and efficient screening of ES cells containing a targeted mutation: the use of DT-A gene with the polyadenylation signal as a negative selection maker. Transgenic Res. 8, 215–221.

    Article  CAS  PubMed  Google Scholar 

  20. Hanson, K. D. and Sedivy, J. M. (1995) Analysis of biological selections for high-efficiency gene targeting. Mol. Cell Biol. 15, 45–51.

    CAS  PubMed  Google Scholar 

  21. Denning C, Burl S, Ainslie A, et al. (2001) Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat. Biotechnol. 19 559–562.

    Article  CAS  PubMed  Google Scholar 

  22. Clark, A. J., Burl, S., Denning, C., and Dickinson, P. (2000). Gene targeting in livestock; a preview. Transgenic Res. 9, 263–275.

    Article  CAS  PubMed  Google Scholar 

  23. Clark, A. J., Ferrier, P., Aslam, S., et al. (2003) Proliferative lifespan is conserved after nuclear transfer. Nat Cell Biol. 5, 535–538.

    Article  CAS  PubMed  Google Scholar 

  24. Yanez, R. J. and Porter, A. C.G. (1998) Therapeutic gene targeting. Gene Ther. 5, 149–159.

    Article  CAS  PubMed  Google Scholar 

  25. Denning, C., Dickinson, P., Burl, S., Wylie, D., Fletcher, J., and Clark, A. J. (2001) Gene targeting in primary fetal fibroblasts from sheep and pig. Cloning Stem Cells. 3, 221–231.

    Article  CAS  PubMed  Google Scholar 

  26. McCreath, K. J., Howcroft, J., Campbell, K. H., Colman, A., Schnieke, A. E., and Kind, A. J. (2000). Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature. 405, 1066–1069.

    Article  CAS  PubMed  Google Scholar 

  27. Cui, W., Aslam, S., Fletcher, J., Wylie, D., Clinton. M., and Clark, A. J. (2002) Stabilization of telomere length and karyotypic stability are directly correlated with the level of hTERT gene expression in primary fibroblasts. J. Biol. Chem. 277, 38,531–38,539.

    Article  CAS  PubMed  Google Scholar 

  28. Cui, W., Wylie, D., Aslam, S., et al. (2003) Telomerase-immortalized sheep fibroblasts can be reprogrammed by nuclear transfer to undergo early development. Biol. Reprod. 69, 15–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Clark, A.J., Burl, S., Denning, C. (2006). Genetic Modification of Sheep by Nuclear Transfer With Gene-Targeted Somatic Cells. In: Verma, P.J., Trounson, A.O. (eds) Nuclear Transfer Protocols. Methods in Molecular Biology™, vol 348. Humana Press. https://doi.org/10.1007/978-1-59745-154-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-154-3_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-280-3

  • Online ISBN: 978-1-59745-154-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics