Skip to main content

Novel and Immortalization-Based Protocols for the Generation of Neural CNS Stem Cell Lines for Gene Therapy Approaches

  • Protocol
Neural Stem Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 438))

Summary

Transplantation of neural cells engineered to produce growth factors or molecules with antitumor effects have the potential of grafted cells to be used as vectors for protein delivery in animal models of diseases. In this context, neural stem cells (NSCs), since their identification, have been considered an attractive subject for therapeutic applications to the damaged brain. NSCs have been shown to include attributes important for potential successful ex vivo gene therapy approaches: they show extensive in vitro expansion and, in some cases, a particular tropism toward pathological brain areas. Clearly, the challenges for future clinical development of this approach are in the definition of the most appropriate stem cells for a given application, what genes or chemicals can be delivered, and what diseases are suitable targets. Ideally, NSC lines should be homogeneous and well characterized in terms of their in vitro stability and grafting capacity. We discuss two possible approaches to produce homogeneous and stable progenitor and NSC lines that exploit an oncogene-based immortalization, or, in the second case, a novel protocol for growth factor expansion of stem cells with radial glia-like features. Furthermore, we describe the use of retroviral particles for genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rossi, F. and Cattaneo, E. (2002) Opinion: neural stem cell therapy for neurological diseases: dreams and reality. Nat. Rev. Neurosci. 3, 401–409.

    Article  CAS  PubMed  Google Scholar 

  2. Conti, L., Reitano, E., and Cattaneo, E. (2006) Neural stem cell systems: diversities and properties after transplantation in animal models of diseases. Brain Pathol. 16, 143–154.

    Article  CAS  PubMed  Google Scholar 

  3. Pollard, S. M., Conti, L., and Smith, A. (2006) Exploitation of adherent neural stem cells in basic and applied neurobiology. Regener. Med. 1, 111–118.

    Article  CAS  Google Scholar 

  4. Temple, S. (2001) The development of neural stem cells. Nature 414, 112–117.

    Article  CAS  PubMed  Google Scholar 

  5. Morshead, C. M., Benveniste, P., Iscove, N. N., and van der Kooy, D. (2002) Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat. Med. 8, 268–273.

    Article  CAS  PubMed  Google Scholar 

  6. Doetsch, F. (2003) A niche for adult neural stem cells. Curr. Opin. Genet. Dev. 13, 543–550.

    Article  CAS  PubMed  Google Scholar 

  7. Gottlieb, D. I. (2002) Large-scale sources of neural stem cells. Annu. Rev. Neurosci. 25, 381–407.

    Article  CAS  PubMed  Google Scholar 

  8. Smith, A. G. (2001) Embryo-derived stem cells: of mice and men. Ann. Rev. Cell Dev. Biol. 17, 435–462.

    Article  CAS  Google Scholar 

  9. Cattaneo, E. and Conti, L. (1998) Generation and characterization of embryonic striatal conditionally immortalized ST14A cells. J. Neurosci. Res. 53, 223–234.

    Article  CAS  PubMed  Google Scholar 

  10. Benedetti, S., Pirola, B., Pollo, B., et al. (2000) Gene therapy of experimental brain tumors using neural progenitor cells. Nat. Med. 6, 447–450.

    Article  CAS  PubMed  Google Scholar 

  11. Lundberg, C., Martinez-Serrano, A., Cattaneo, E., McKay, R. D., and Bjorklund, A. (1997) Survival, integration, and differentiation of neural stem cell lines after transplantation to the adult rat striatum. Exp. Neurol. 145, 342–360.

    Article  CAS  PubMed  Google Scholar 

  12. Martinez-Serrano, A. and Bjorklund, A. (1997) Immortalized neural progenitor cells for CNS gene transfer and repair. Trends Neurosci. 20, 530–538.

    Article  CAS  PubMed  Google Scholar 

  13. Jat, P. S. and Sharp, P. A. (1989) Cell lines established by a temperature-sensitive simian virus 40 large-T-antigen gene are growth restricted at the nonpermissive temperature. Mol. Cell Biol. 9, 1672–1681.

    CAS  PubMed  Google Scholar 

  14. Hoshimaru, M., Ray, J., Sah, D. W., and Gage, F. h. (1996) Differentiation of the immortalized adult neuronal progenitor cell line HC2S2 into neurons by regulatable suppression of the v-myc oncogene. Proc. Natl. Acad. Sci. USA 93, 1518–1523.

    Article  CAS  PubMed  Google Scholar 

  15. Sah, D. W., Ray, J., and Gage, F. h. (1997) Bipotent progenitor cell lines from the human CNS. Nat. Biotechnol. 15, 574–580.

    Article  CAS  PubMed  Google Scholar 

  16. Ehrlich, M. E., Conti, L., Toselli, M., et al. (2001) ST14A cells have properties of a medium-size spiny neuron. Exp. Neurol. 167, 215–226.

    Article  CAS  PubMed  Google Scholar 

  17. Freundlieb, S., Schirra-Muller, C., and Bujard, h. (1999) A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J. Gene Med. 1, 4–12.

    Article  CAS  PubMed  Google Scholar 

  18. Vescovi, A. L., Parati, E. A., Gritti, A., et al. (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol. 156, 71–83.

    Article  CAS  PubMed  Google Scholar 

  19. Reynolds, B. A. and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  20. Reynolds, B. A., Tetzlaff, W., and Weiss, S. (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574.

    CAS  PubMed  Google Scholar 

  21. Gritti, A., Parati, E. A., Cova, L., et al. (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091–1100.

    CAS  PubMed  Google Scholar 

  22. Suslov, O. N., Kukekov, V. G., Ignatova, T. N., and Steindler, D. A. (2002) Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc. Natl. Acad. Sci. USA 99, 14506–14511.

    Article  CAS  PubMed  Google Scholar 

  23. Singec, I., Knoth, R., Meyer, R. P., et al. (2006) Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat. Methods 3, 801–806.

    Article  CAS  PubMed  Google Scholar 

  24. Conti, L., Pollard, S. M., Gorba, T., et al. (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 3, e283.

    Article  PubMed  Google Scholar 

  25. Pollard, S. M., Conti, L., Sun, Y., Goffredo, D., and Smith, A. (2005) Neural stem (NS) cell lines: isolation and identity. Cerebral Cortex (in press).

    Google Scholar 

  26. Pollard, S. M. and Conti, L. (2007) Investigating the radial glial cell lineage in vitro. Prog. Neurobiol. (in press).

    Google Scholar 

  27. Pollard, S. M., Benchoua, A., and Lowell, S. (2006) Conversion of embryonic stem cells to neural stem cells, neurons and glia. Methods Enzymol. (in press).

    Google Scholar 

  28. Villa, A., Snyder, E. Y., Vescovi, A., and Martinez-Serrano, A. (2000) Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp. Neurol. 161, 67–84.

    Article  CAS  PubMed  Google Scholar 

  29. Cattaneo, E., Conti, L., Gritti, A., Frolichsthal, P., Govoni, S., and Vescovi, A. (1996) Non-virally mediated gene transfer into human central nervous system precursor cells. Brain Res. Mol. Brain Res. 42, 161–166.

    Article  CAS  PubMed  Google Scholar 

  30. Winkler, C., Fricker, R. A., Gates, M. A., et al. (1998) Incorporation and glial differentiation of mouse EGF-responsive neural progenitor cells after transplantation into the embryonic rat brain. Mol. Cell. Neurosci. 11, 99–116.

    Article  CAS  PubMed  Google Scholar 

  31. Bjorklund, A. and Lindvall, O. (2000) Cell replacement therapies for central nervous system disorders. Nat. Neurosci. 3, 537–544.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The studies in our laboratory have been supported by Eurostemcell (FP6, European Union), NeuroNE (FP6, European Union), Telethon (GGP02457), Fondazione Cariplo, Huntington’s Disease Society of America, Hereditary Disease Foundation, Ministero dell’Istruzione, dell’Universit‘a e della Ricerca (2005051740).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Conti, L., Cattaneo, E. (2008). Novel and Immortalization-Based Protocols for the Generation of Neural CNS Stem Cell Lines for Gene Therapy Approaches. In: Weiner, L.P. (eds) Neural Stem Cells. Methods in Molecular Biology™, vol 438. Humana Press. https://doi.org/10.1007/978-1-59745-133-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-133-8_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-846-1

  • Online ISBN: 978-1-59745-133-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics