Skip to main content

Label-Free LC-MS Method for the Identification of Biomarkers

  • Protocol
Clinical Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 428))

Summary

Pharmaceutical companies and regulatory agencies are pursuing biomarkers as a means to increase the productivity of drug development. Quantifying differential levels of proteins from complex biological samples like plasma or cerebrospinal fluid is one specific approach being used to identify markers of drug action, efficacy, toxicity, etc. Academic investigators are also interested in markers that are diagnostic or prognostic of disease states. We report a comprehensive, fully automated, and label-free approach to relative protein quantification including: sample preparation, proteolytic protein digestion, LC-MS/MS data acquisition, de-noising, mass and charge state estimation, chromatographic alignment, and peptide quantification via integration of extracted ion chromatograms. Additionally, we describe methods for transformation and normalization of the quantitative peptide levels in multiplexed measurements to improve precision for statistical analysis. Lastly, we outline how the described methods can be used to design and power biomarker discovery studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FDA Critical Path Initiative 2006 (http://www.fda.gov/oc/initiatives/criticalpath).

  2. NIH Road Map for Medical Research 2006 (http://www.nihroadmap.nih.gov/index.asp).

  3. Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. 1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17: 994–999.

    Article  PubMed  CAS  Google Scholar 

  4. Aggarwal, K., Choe, L.H., and Lee, K.H. 2006. Shotgun proteomics using the iTRAQ isobaric tags. Brief. Funct. Genomic. Proteomic. 5: 112–120.

    Article  PubMed  CAS  Google Scholar 

  5. Petricoin, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C. et al 2002. Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359: 572–577.

    Article  PubMed  CAS  Google Scholar 

  6. Radulovic, D., Jelveh, S., Ryu, S., Hamilton, T.G., Foss, E., Mao, Y., and Emili, A. 2004. Informatics platform for global proteomic profiling and biomarker discovery using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 3: 984–997.

    Article  PubMed  CAS  Google Scholar 

  7. Wiener, M.C., Sachs, J.R., Deyanova, E.G., and Yates, N.A. 2004. Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal. Chem. 76: 6085–6096.

    Article  PubMed  CAS  Google Scholar 

  8. Gao, J., Opiteck, G.J., Friedrichs, M.S., Dongre, A.R., and Hefta, S.A. 2003. Changes in the protein expression of yeast as a function of carbon source. J. Proteome. Res. 2: 643–649.

    Article  PubMed  CAS  Google Scholar 

  9. Colinge, J., Chiappe, D., Lagache, S., Moniatte, M., and Bougueleret, L. 2005. Differential Proteomics via probabilistic peptide identification scores. Anal. Chem. 77: 596–606.

    Article  PubMed  CAS  Google Scholar 

  10. Higgs, R.E., Knierman, M.D., Gelfanova, V., Butler, J.P., and Hale, J.E. 2005. Comprehensive label-free method for the relative quantification of proteins from biological samples. J. Proteome. Res. 4: 1442–1450.

    Article  PubMed  CAS  Google Scholar 

  11. Higgs, R.E., Knierman, M.D., Freeman, A.B., Gelbert, L.M., Patil, S.T., and Hale, J.E. 2007. Estimating the statistical significance of peptide identifications from shotgun proteomics experiments. J. Proteome. Res. 6: 1758–1767.

    Article  PubMed  CAS  Google Scholar 

  12. Patil, S.T., Higgs, R.E., Brandt, J.E., Knierman, M.D., Gelfanova, V., Butler, J.P., Downing, A.M., Dorocke, J., Dean, R.A., Potter, W.Z. et al. 2007. Identifying pharmacodynamic protein markers of centrally active drugs in humans: a pilot study in a novel clinical model. J. Proteome. Res. 6: 955–966.

    Article  PubMed  CAS  Google Scholar 

  13. Anderson, L., and Hunter, C.L. 2006. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5: 573–588.

    PubMed  CAS  Google Scholar 

  14. Anderson, N.L., and Anderson, N.G. 2002. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1: 845–867.

    Article  PubMed  CAS  Google Scholar 

  15. Gutman, S., and Kessler, L.G. 2006. The US Food and Drug Administration perspective on cancer biomarker development. Nat. Rev. Cancer 6: 565–571.

    Article  PubMed  CAS  Google Scholar 

  16. Rifai, N., Gillette, M.A., and Carr, S.A. 2006. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol. 24: 971–983.

    Article  PubMed  CAS  Google Scholar 

  17. Hale, J.E., Butler, J.P., Gelfanova, V., You, J.S., and Knierman, M.D. 2004. A simplified procedure for the reduction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis. Anal. Biochem. 333: 174–181.

    Article  PubMed  CAS  Google Scholar 

  18. Proakis, J.G., and Manolakis, D.G. 1992. Digital Signal Processing – Principles, Algorithms and Applications. Prentice Hall, New York, NY.

    Google Scholar 

  19. Eng, J.K., Mccormack, A.L., and Yates, J.R. 1994. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry 5: 976–989.

    Article  CAS  Google Scholar 

  20. Craig, R., and Beavis, R.C. 2003. A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun. Mass Spectrom. 17: 2310–2316.

    Article  PubMed  CAS  Google Scholar 

  21. Ulintz, P.J., Zhu, J., Qin, Z.S., and Andrews, P.C. 2006. Improved classification of mass spectrometry database search results using newer machine learning approaches. Mol Cell Proteomics 5: 497–509.

    PubMed  CAS  Google Scholar 

  22. Benjamini, Y., and Hochberg, Y. 1995. Controlling the false discovery rate - a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Methodological 57: 289–300.

    Google Scholar 

  23. Keller, A., Nesvizhskii, A.I., Kolker, E., and Aebersold, R. 2002. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74: 5383–5392.

    Article  PubMed  CAS  Google Scholar 

  24. Cleveland, W.S., Grosse, E., and Shyu, W.M. 1992. Local regression models. In Statistical Models in S. J.M. Chambers and T.J. Hastie, eds. Wadsworth & Brooks/Cole, Pacific Grove, CA.

    Google Scholar 

  25. Boelens, H.F., Dijkstra, R.J., Eilers, P.H., Fitzpatrick, F., and Westerhuis, J.A. 2004. New background correction method for liquid chromatography with diode array detection, infrared spectroscopic detection and Raman spectroscopic detection. J. Chromatogr. A 1057: 21–30.

    Article  PubMed  CAS  Google Scholar 

  26. Bolstad, B.M., Irizarry, R.A., Astrand, M., and Speed, T.P. 2003. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.

    Article  PubMed  CAS  Google Scholar 

  27. Miller, R.G., Jr. 1991. Simultaneous Statistical Inference. Springer-Verlag, New York.

    Google Scholar 

  28. Butler, K.W., Deslauriers, R., Geoffrion, Y., Storey, J.M., Storey, K.B., Smith, I.C., and Somorjai, R.L. 1985. 31P nuclear magnetic resonance studies of crayfish (Orconectes virilis). The use of inversion spin transfer to monitor enzyme kinetics in vivo. Eur. J. Biochem. 149: 79–83.

    Article  PubMed  CAS  Google Scholar 

  29. Efron, B. 2004. Large-scale simultaneous hypothesis testing: the choice of a null distribution. J. Am. Stat. Soc. 99: 96–104.

    Google Scholar 

  30. Pounds, S., and Cheng, C. 2005. Sample size determination for the false discovery rate. Bioinformatics 21: 4263–4271.

    Article  PubMed  CAS  Google Scholar 

  31. Hu, J., Zou, F., and Wright, F.A. 2005. Practical FDR-based sample size calculations in microarray experiments. Bioinformatics 21: 3264–3272.

    Article  PubMed  CAS  Google Scholar 

  32. Jung, S.H. 2005. Sample size for FDR-control in microarray data analysis. Bioinformatics 21: 3097–3104.

    Article  PubMed  CAS  Google Scholar 

  33. Li, S.S., Bigler, J., Lampe, J.W., Potter, J.D., and Feng, Z. 2005. FDR-controlling testing procedures and sample size determination for microarrays. Stat. Med. 24: 2267–2280.

    Article  PubMed  Google Scholar 

  34. Bemis, K.G. 2005. Statistical Issues with Mass Spectrometry Proteomics for Biomarker Discovery. In International Workshop on Statistical Methodology in Clinical and Nonclinical R&DDIA conference, Nice, France.

    Google Scholar 

Download references

Acknowledgments

We thank John Saalwaechter and Andrew Kaczorek and the entire scientific computing team for their efforts in developing and maintaining a high-availability grid-computing environment used for this work. We also thank Jude Onyia and the statistical and mathematical sciences management team for supporting us in the development of these methods.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Higgs, R.E., Knierman, M.D., Gelfanova, V., Butler, J.P., Hale, J.E. (2008). Label-Free LC-MS Method for the Identification of Biomarkers. In: Vlahou, A. (eds) Clinical Proteomics. Methods in Molecular Biology™, vol 428. Humana Press. https://doi.org/10.1007/978-1-59745-117-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-117-8_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-837-9

  • Online ISBN: 978-1-59745-117-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics