Advertisement

In Vitro Analysis of Translation Enhancers

  • Aurélie M. Rakotondrafara
  • W. Allen Miller
Part of the Methods in Molecular Biology™ book series (MIMB, volume 451)

Abstract

The genomes of many plant viruses contain translation-enhancing sequences that allow them to compete successfully with host messenger RNAs for the translation machinery. Identification of translation enhancer elements is valuable, both to gain understanding of virus gene expression control and to apply them as tools for engineering gene expression in plant cells. Here, we describe experiments designed to detect viral elements that enhance translation, focusing on cap-independent translation activity, using a high fidelity cell-free wheat germ translation extract.

Keywords

Plant RNA viruses Translation enhancer Cap-independent translation In vitro translation Wheat germ extract Cap analogs Ribosome scanning Internal ribosome entry site 

References

  1. 1.
    1. Kapp, L. D., and Lorsch, J. R. (2004) The molecular mechanics of eukaryotic translation. Annu. Rev. Biochem. 73, 657–704.PubMedCrossRefGoogle Scholar
  2. 2.
    2. Zelenina, D. A., Kulaeva, O. I., Smirnyagina, E. V., Solovyev, A. G., Miroshnichenko, N. A., Fedorkin, O. N., et al. (1992) Translation enhancing properties of the 5′-leader of potato virus X genomic RNA. FEBS Lett. 296, 267–270.PubMedCrossRefGoogle Scholar
  3. 3.
    3. Gallie, D. R. (2002) The 5′-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Res. 30, 3401–3411.PubMedCrossRefGoogle Scholar
  4. 4.
    4. Neeleman, L., Olsthoorn, R. C., Linthorst, H. J., and Bol, J. F. (2001) Translation of a non-polyadenylated viral RNA is enhanced by binding of viral coat protein or polyadenylation of the RNA. Proc. Natl. Acad. Sci. USA 98, 14286–14291.PubMedCrossRefGoogle Scholar
  5. 5.
    5. Matsuda, D., and Dreher, T. W. (2004) The tRNA-like structure of Turnip yellow mosaic virus RNA is a 3′-translational enhancer. Virology 321, 36–46.PubMedCrossRefGoogle Scholar
  6. 6.
    6. Neeleman, L., Linthorst, H. J., and Bol, J. F. (2004) Efficient translation of alfamovirus RNAs requires the binding of coat protein dimers to the 3′ termini of the viral RNAs. J. Gen. Virol. 85, 231–240.PubMedCrossRefGoogle Scholar
  7. 7.
    7. Kneller Pettit, E. L., Rakotondrafara, A. M., and Miller, W. A. (2006) Cap-independent translation of plant viral RNAs. Virus Res. 119, 63–75.CrossRefGoogle Scholar
  8. 8.
    8. Lax, S. R., Lauer, S. J., Browning, K. S., and Ravel, J. M. (1986) Purification and properties of protein synthesis initiation and elongation factors from wheat germ. Methods Enzymol. 118, 109–128.PubMedCrossRefGoogle Scholar
  9. 9.
    9. Roberts, B. E., and Paterson, B. M. (1973) Efficient translation of TMV RNA and rabbit globin 9S RNA in a cell-free system from commercial wheat germ. Proc. Natl. Acad. Sci. USA 70, 2330–2334.PubMedCrossRefGoogle Scholar
  10. 10.
    10. Pelham, H. R., and Jackson, R. J. (1976) An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem. 67, 247–256.PubMedCrossRefGoogle Scholar
  11. 11.
    11. Kozak, M. (1989) Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol. Cell. Biol. 9, 5073–5080.PubMedGoogle Scholar
  12. 12.
    12. Michel, Y. M., Poncet, D., Piron, M., Kean, K. M., and Borman, A. M. (2000) Cap-poly(A) synergy in mammalian cell-free extracts. Investigation of the requirements for poly(A)-medi-ated stimulation of translation initiation. J. Biol. Chem. 275, 32268–32276.PubMedCrossRefGoogle Scholar
  13. 13.
    13. Turner, R., and Foster, G. D. (1998) In vitro transcription and translation. Methods Mol. Biol. 81, 293–299.PubMedGoogle Scholar
  14. 14.
    14. Kozak, M. (1989) Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol. Cell. Biol. 9, 5134–5142.PubMedGoogle Scholar
  15. 15.
    15. Jackson, R. J., Hunt, S. L., Reynolds, J. E., and Kaminski, A. (1995) in “Cap-independent translation” (Sarnow, P., Ed.), Vol. 203, pp. 1–29, Springer-Verlag, Berlin Heidelberg.Google Scholar
  16. 16.
    16. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.PubMedCrossRefGoogle Scholar
  17. 17.
    17. Gallie, D. R. (1991) The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108–2116.PubMedCrossRefGoogle Scholar
  18. 18.
    18. Guo, L., Allen, E., and Miller, W. A. (2001) Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA. Mol. Cell 7, 1103–1109.PubMedCrossRefGoogle Scholar
  19. 19.
    19. Joshi, C. P., Zhou, H., Huang, X., and Chiang, V. L. (1997) Context sequences of translation initiation codon in plants. Plant Mol. Biol. 35, 993–1001.PubMedCrossRefGoogle Scholar
  20. 20.
    20. Ryabova, L. A., and Hohn, T. (2000) Ribosome shunting in the cauliflower mosaic virus 35S RNA leader is a special case of reinitiation of translation functioning in plant and animal systems. Genes Dev. 14, 817–829.PubMedGoogle Scholar
  21. 21.
    21. Chen, C. Y., and Sarnow, P. (1998) Internal ribosome entry sites tests with circular mRNAs. Methods Mol. Biol. 77, 355–363.PubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • Aurélie M. Rakotondrafara
    • 1
  • W. Allen Miller
    • 1
  1. 1.Molecular Cellular and Developmental Biology, Department of Plant PathologyIowa State UniversityAmesUSA

Personalised recommendations