Skip to main content

Agroinoculation: A Simple Procedure for Systemic Infection of Plants with Viruses

  • Protocol
Plant Virology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 451))

Abstract

Plant-virus interaction studies, for long, plagued by asynchronous/failed infections, have improved since the usage of Agrobacterium as a delivery agent for viral genomes. Popularly known as “agroinoculation,” this method has revolutionized plant virology studies, leading to identification of viruses as casual agents of disease, viral genome mutagenesis and recombination analyses, and virus-induced gene silencing (VIGS) applications. We present here a brief overview of the recent applications of this method and a detailed protocol for agroinoculation and VIGS used in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Grimsley, N., Hohn, B., Hohn, T., and Walden, R. (1986) “Agroinfection,“ an alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci 83, 3282–86.

    Article  PubMed  CAS  Google Scholar 

  2. 2. Grimsley, N., Hohn, T., Davies, J. W., and Hohn, B. (1987) Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325, 177–79.

    Article  CAS  Google Scholar 

  3. 3. Elmer, J. S., Sunter, G., Gardiner, W. E., Brand, L., Browning, C. K., Bisaro, D. M., and Rogers, S. G. (1988) Agrobacterium-mediated inoculation of plants with tomato golden mosaic virus DNAs. Plant Mol Biol 10, 225–34.

    Article  CAS  Google Scholar 

  4. 4. Navot, N., Pichersky, E., Zeidan, M., Zamir, D., and Czosnek, H. (1991) Tomato yellow leaf curl virus: A whitefly-transmitted geminivirus with a single genomic component. Virology 185, 151–61.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Czosnek, H., Kheyr-Pour, A., Gronenbom, B., Remetz, E., Zeidan, M., Altman, A., Rabinowitch, H. D., Vidavsky, S., Kedar, N., Gafni, Y., and Zamir, D. (1993) Replication of tomato yellow leaf curl virus (TYLCV) DNA in agroinoculated leaf discs from selected tomato genotypes. Plant Mol Biol 22, 995–1005.

    Article  PubMed  CAS  Google Scholar 

  6. 6. Bendahmane, M., Schalk, H.-J., and Gronenborn, B. (1995) Identification and characterization of wheat dwarf virus from France using a rapid method for geminiviurs DNA preparation. Mol Plant Pathol 85, 1449–55.

    CAS  Google Scholar 

  7. 7. Buragohain, A., Sung, Y., Coffin, R., and Coutts, R. (1994) The infectivity of dimeric potato yellow mosaic geminivirus clones in different hosts. J Gen Virol 75, 2857–61.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Mandal, B., Varma, A., and Malathi, V. G. (1997) Systemic infection of Vigna mungo using the cloned DNAs of the blackgram isolate of mungbean yellow mosaic geminivirus through agroinoculation and transmission of the progeny virus by whiteflies. J Phytopathol 145, 505–10.

    Article  Google Scholar 

  9. 9. Lamprecht, S., and Jelkmann, W. (1997) Infectious cDNA clone used to identify strawberry mild yellow edge-associated potexvirus as causal agent of the disease. J Gen Virol. 78, 2347–53.

    PubMed  CAS  Google Scholar 

  10. 10. Klinkenberg, F. A., EUwood, S., and Stanley, J. (1989) Fate of African cassava Mosaic virus coat protein deletion mutants after agroinoculation. J Gen Virol 70, 1837–44.

    Article  CAS  Google Scholar 

  11. 11. Stanley, J., Latham, J. R., Pinner, M. S., Bedford, 1., and Markham, P G. (1992) Mutational analysis of the monopartite geminivirus beet curly top virus. Virology 191, 396–405.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Sung, Y, and Coutts, R. (1995) Mutational analysis of potato yellow mosaic geminivirus. J Gen Virol 76, 1773–80.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Sadowy, E., Maasen, A., Juszczuk, M., David, C, Zagorski-Ostoja, W., Gronenborn, B., and Hulanicka, M. D. (2001) The OREO product of Potato leafroU virus is indispensable for virus accumulation. J Gen Virol 82, 1529–32.

    PubMed  CAS  Google Scholar 

  14. 14. Sadowy, E., Juszczuk, M., David, C, Gronenborn, B., and Hulanicka, M. D. (2001) Mutational analysis of the proteinase function of Potato leafroU virus. J Gen Virol 82, 1517–27.

    PubMed  CAS  Google Scholar 

  15. 15. Boulton, M. I., King, D. I., Markham, P G., Pinner, M. S., and Davies, J. W. (1991) Host range and symptoms are determined by specific domains of the maize streak virus genome. Virology 181,312–18.

    Article  PubMed  CAS  Google Scholar 

  16. 16. Rigden, J. E., Krake, L. R., Rezaian, M. A., and Dry, I. B. (1994) ORE C4 of tomato leaf curl geminivirus is a determinant of symptom severity. Virology 204, 847–50.

    Article  PubMed  CAS  Google Scholar 

  17. 17. Saunders, K., and Stanley, J. (1995) Complementation of African cassava mosaic virus AC2 gene function in a mixed bipartite geminivirus infection. J Gen Virol 76, 2287–92.

    Article  PubMed  CAS  Google Scholar 

  18. 18. Sung, Y, and Coutts, R. (1995) Pseudorecombination and complementation between potato yellow mosaic geminivirus and tomato golden mosaic geminivirus. J Gen Virol 76, 2809–15.

    Article  PubMed  CAS  Google Scholar 

  19. 19. Kiraly, L., Bourque, J. E., and Schoelz, J. E. (1998) Temporal and spatial appearance of recombinant viruses formed between cauliflower mosaic virus (CaMV) and CaMV sequences present in transgenic Nicotiana bigelovii. Mol Plant Microbe Interact 11, 309–16.

    Article  CAS  Google Scholar 

  20. 20. Kheyr-Pour, A., Gronenborn, B., and Czosnek, H. (1994) Agroinoculation of tomato yellow leaf curl vims (TYLCV) overcomes the virus resistance of wild Lycopersicon species. Plant Breed 112, 228–33.

    Article  CAS  Google Scholar 

  21. 21. Cruz, F. C. S., Boulton, M. 1., Hull, R., and Azzam, O. (1999) International Rice Research Institute, Los Banos, Philippines. J Phytopathol 147, 653–59.

    Article  Google Scholar 

  22. 22. Martin, B. P., Willment, J. A., and Rybicki, E. P. (1999) Evaluation of maize streak virus pathogenicity in differentially resistant Zea mays genotypes. Virology 89, 695–700.

    CAS  Google Scholar 

  23. 23. Martin, B. P., and Rybicki, E. P. (2000) Improved efficiency of Zea mays agroinoculation with Maize streak virus. Plant Dis 84, 1096–98.

    Article  CAS  Google Scholar 

  24. 24. Tripathi, S., and Varma, A. (2003) Identification of sources of resistance in Lycopersicon species to Tomato leaf curl geminivirus (ToLCV) by agroinoculation. Euphytica 129, 43–52.

    Article  CAS  Google Scholar 

  25. 25. Ding, X. S., Liu, J., Chen, N.-H., Fohmonov, A., Hou, Y.-M., Bao, Y, Katagi, C, Carter, S. A., and Nelson, R. S. (2004) The Tobacco mosaic virus 126-kDa protein associated with virus replication and movement suppresses RNA silencing. Mol Plant Microbe Interact 17, 583–92.

    Article  PubMed  CAS  Google Scholar 

  26. 26. Kościanśka, E., Kalantidis, K., Wypijewski, K., Sadowski, J., and Tabler, M. (2005) Analysis of RNA Silencing in Agroinfiltrated Leaves of Nicotiana benthamiana and Nicotiana tabacum. Plant Mol Biol 59, 647–61.

    Article  PubMed  Google Scholar 

  27. 27. Ryabov, E. V., van Wezel, R., Walsh, J., and Hong, Y (2004) Cell-to-cell, but not long-distance, spread of RNA silencing that is induced in individual epidermal cells. J Virol 78, 3149–54.

    Article  PubMed  CAS  Google Scholar 

  28. 28. Xie, Q., and Guo, H.-S. (2006) Systemic antiviral silencing in plants. Virus Res 118, 1–6.

    Article  PubMed  CAS  Google Scholar 

  29. 29. Herr, A. J., and Baulcombe, D. C. (2004) RNA silencing pathways in plants. Cold Spring Harb Symp Quant Biol 69, 363–70.

    Article  PubMed  CAS  Google Scholar 

  30. 30. Liu, Y, Schiff, M., and Dinesh-Kumar, S. P. (2002) Virus-induced gene silencing in tomato. Plant J 31,777–86.

    Article  PubMed  CAS  Google Scholar 

  31. 31. Dinesh-Kumar, S. P, Anandalakshmi, R., Marathe, R., Schiff, M., and Liu, Y (2003) in “Plant Functional Genomics” (Grotewold, E., Ed.), Vol. 236, pp. 287–93, Humana Press, Inc., Totowa, NJ.

    Chapter  Google Scholar 

  32. 32. Ryu, C.-M., Anand, A., Kang, L., and Mysore, K. S. (2004) Agrodrench: A novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant J 40, 322–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Vaghchhipawala, Z.E., Mysore, K.S. (2008). Agroinoculation: A Simple Procedure for Systemic Infection of Plants with Viruses. In: Foster, G.D., Johansen, I.E., Hong, Y., Nagy, P.D. (eds) Plant Virology Protocols. Methods in Molecular Biology™, vol 451. Humana Press. https://doi.org/10.1007/978-1-59745-102-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-102-4_38

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-827-0

  • Online ISBN: 978-1-59745-102-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics