Advertisement

Role of Capsid Proteins

  • John F. Bol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 451)

Abstract

Coat proteins (CPs) of all plant viruses have an early function in disassembly of parental virus and a late function in assembly of progeny virus. Depending on the virus, however, CPs may play a role in many steps of the infection cycle in between these early and late functions. It has been shown that CPs can play a role in translation of viral RNA, targeting of the viral genome to its site of replication, cell-to-cell and/or systemic movement of the virus, symptomatology and virulence of the infection, activation of Rgene-mediated host defenses, suppression of RNA silencing, interference with suppression of RNA silencing, and determination of the specificity of virus transmission by vectors. These functions are reviewed in this chapter.

Keywords

Virus assembly Virus disassembly Translation of viral RNA Replication of viral RNA Cell-to-cell movement Long-distance movement Hypersensitive response RNA silencing Vector transmission 

References

  1. 1.
    1. Callaway, A., Giesman-Cookmeyer, D., Gillock, E.T., Sit, T.L., and Lommel, S.A. (2001) The multifunctional capsid proteins of plant RNA viruses. Annu. Rev. Phytopathol. 39, 419–460.PubMedCrossRefGoogle Scholar
  2. 2.
    2. Culver, J.N. (2002) Tobacco mosaic virus assembly and disassembly: Determinants in pathogenicity and resistance. Annu. Rev. Phytopathol. 40, 287–308.PubMedCrossRefGoogle Scholar
  3. 3.
    3. Dreher, T.W. and Miller, W.A. (2006) Translational control in positive strand RNA plant viruses. Virology 344, 185–197.PubMedCrossRefGoogle Scholar
  4. 4.
    4. Bol, J.F. (2005) Replication of Alfamo- and Ilarviruses: Role of the coat protein. Annu. Rev. Phytopathol. 43, 39–62.PubMedCrossRefGoogle Scholar
  5. 5.
    5. Rojas, M.R., Jiang, H., Salati, R., Xoconostle-Cázares, B., Sudarshana, M.R., Lucas, W.J., and Gilbertson, R.L. (2001) Functional analysis of proteins involved in the movement of the monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291, 110–125.Google Scholar
  6. 6.
    6. Liu, H., Boulton, M.I., Oparka, K.J., and Davies, J.W. (2001) Interaction of the movement and coat proteins of maize streak virus: Implications for the transport of viral DNA. J. Gen. Virol. 82, 35–44.Google Scholar
  7. 7.
    7. Guerra-Peraza, O., Kirk, D., Seltzer, V., Veluthambi, K., Schmit, A.C., Hohn, T, and Herzog, E. (2005) Coat proteins of Rice tungro bacilliform virus and Mungbean yellow mosaic virus contain multiple nuclear-localization signals and interact with importin α. J. Gen. Virol. 86, 1815–1826.PubMedCrossRefGoogle Scholar
  8. 8.
    8. Himmelbach, A., Chapdelaine, Y., and Hohn, T. (1996) Interaction between Cauliflower mosaic virus inclusion body protein and capsid protein: Implications for viral assembly. Virology 217, 147–157.PubMedCrossRefGoogle Scholar
  9. 9.
    9. Annamalai, P. and Rao, A.L.N. (2005) Replication-independent expression of genome components and capsid protein of brome mosaic virus in planta: A functional role for viral replicase in RNA packaging. Virology 338, 96–111.PubMedCrossRefGoogle Scholar
  10. 10.
    10. Kwon, S-J., Park, M-R., Kim, K-W., Plante, C.A., Hemenway, C.L. and Kim, K-H. (2005) cis-Acting sequences required for coat protein binding and in vitro assembly of Potato virus X. Virology 334, 83–97.PubMedCrossRefGoogle Scholar
  11. 11.
    11. Wu, X. and Shaw, J.G (1998) Evidence that assembly of a potyvirus begins near the 5′ terminus of the viral RNA. J. Gen. Virol. 79, 1525–1529.Google Scholar
  12. 12.
    12. Peremyslov, V.V., Andreev, I.A., Prokhnevsky, A.I., Duncan, G.H., Taliansky, M.E., and Dolja, V.V. (2004) Complex molecular architecture of beet yellows virus particles. Proc. Natl. Acad. Sci. USA 101, 5030–5035.PubMedCrossRefGoogle Scholar
  13. 13.
    13. Qu, F. and Morris, T.J. (1997) Encapsidation of turnip crinkle virus is defined by a specific packaging signal and RNA size. J. Virol. 71, 1428–1435.Google Scholar
  14. 14.
    14. Scholthof, H.B. (2005) Plant virus transport: motions of functional equivalence. Trends Plant Sci. 10, 376–382.PubMedCrossRefGoogle Scholar
  15. 15.
    15. Stavolone, L., Villani, M.E., Leclerc, D., and Hohn, T. (2005). A coiled-coil interaction mediates cauliflower mosaic virus cell-to-cell movement. Proc. Natl. Acad. Sci. USA 102, 6219–6224.PubMedCrossRefGoogle Scholar
  16. 16.
    16. Kakani, K., Reade, R., and Rochon, D. (2004) Evidence that vector transmission of a plant virus requires conformational change in virus particles. J. Mol. Biol.. 338, 507–517.CrossRefGoogle Scholar
  17. 17.
    17. Vellios, E., Duncan, G., Brown, D., and MacFarlane, S. (2002) Immunogold localization of tobravirus 2b nematode transmission helper protein associated with virus particles. Virology 300, 118–124.PubMedCrossRefGoogle Scholar
  18. 18.
    18. Soosaar, J.L.M., Burch-Smith, T.M., and Dinesh-Kumar, S. (2005) Mechanisms of plant resistance to viruses. Nat. Rev. Microbiol. 3, 789–798.PubMedCrossRefGoogle Scholar
  19. 19.
    19. Ren, T., Qu, F., and Morris, T.J. (2005) The nuclear localization of the Arabidopsis transcription factor TIP is blocked by its interaction with the coat protein of Turnip crinkle virus. Virology 331, 316–324.PubMedCrossRefGoogle Scholar
  20. 20.
    20. Roth, B.M., Pruss, G.J., and Vance, V.B. (2004) Plant viral suppressors of RNA silencing. Virus Res. 102, 97–108.PubMedCrossRefGoogle Scholar
  21. 21.
    21. Qiu, W. and Scholthof, K.G. (2004) Satellite panicum mosaic capsid protein elicits symptoms on a nonhost plant and interferes with a suppressor of virus-induced gene silencing. Mol. Plant-Microbe Int. 17, 263–271.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science + Business Media, LLC 2008

Authors and Affiliations

  • John F. Bol
    • 1
  1. 1.Clusius Laboratory, Institute of Biology, Leiden UniversityAL Leidenthe Netherlands

Personalised recommendations