Skip to main content

Cloning of Short Interfering RNAs from Virus-Infected Plants

  • Protocol
Plant Virology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 451))

Abstract

During their infection in plants, viruses can form double stranded (ds) RNA structures. These dsRNAs can be recognized by plants as “aberrant” signals and short interfering RNA (siRNA) molecules of 19–25 nt will be produced with sequences derived from the viral source. Knowledge about antiviral siRNA profiles including siRNA size, distribution, polarity, etc. provides valuable insights to plant-virus interactions. In this chapter, we describe a simple method for cloning siRNA from virus-infected plants. This protocol includes isolation of small RNAs, their ligation to a pair of 5′ and 3′ adapters, RT-PCR/PCR amplification, and subsequent concatamerization before pGEM-T cloning and sequencing. Concatamers containing as many as 15 small RNA inserts can be produced. This protocol has successfully been apphed to leaf materials of monocots and dicots infected with poty-, carmo-, and sobemo-viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. van der Krol, A. R., Mur, L. A., Beld, M., Mol, J. N., and Stuitje, A. R. (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. The Plant Cell 2, 291–299.

    Article  PubMed  Google Scholar 

  2. 2. Napoli, C, Lemieux, C, and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. The Plant Cell 2, 279–289.

    Article  PubMed  CAS  Google Scholar 

  3. 3. Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  PubMed  CAS  Google Scholar 

  4. 4. Hamilton, A. J. and Baulcombe, D. C. (1999) A species of small antisense RNA in posttran- scriptional gene silencing in plants. Science 286, 950– 952.

    Article  PubMed  CAS  Google Scholar 

  5. 5. Zamore, R D., Tuschl, T., Sharp, R A., and Bartel, D. R (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell. 101,25–33.

    Article  PubMed  CAS  Google Scholar 

  6. 6. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes and Development 15, 188–200.

    Article  PubMed  CAS  Google Scholar 

  7. 7. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. The EMBO Journal 20, 6877–6888.

    Article  PubMed  CAS  Google Scholar 

  8. 8. Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. .Nature. 404, 293–296.

    Article  PubMed  CAS  Google Scholar 

  9. 9. Doench, J. G., Petersen, C. P, and Sharp, P A. (2003) siRNAs can function as miRNAs. Genes and Development 17, 438–442.

    Article  PubMed  CAS  Google Scholar 

  10. 10. Hammond, S. M., Gaudy, A. A., and Hannon, G. J. (2001) Post-transcriptional gene silencing by double-stranded RNA. Nature Reviews Genetics 2, 110–119.

    Article  PubMed  CAS  Google Scholar 

  11. 11. Aukerman, M. J. and Sakai, H. (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. The Plant Cell. 15, 2730–2741.

    Article  PubMed  CAS  Google Scholar 

  12. 12. Chen, X. (2004) A MicroRNA as a translational repressor of APETALA2 in arabidopsis flower development. Science 303, 2022–2025.

    Article  PubMed  CAS  Google Scholar 

  13. 13. Hutvagner, G. and Zamore, P. D. (2002) RNAi: nature abhors a double-strand. Current Opinion in Genetics and Development 12, 225–232.

    Article  PubMed  CAS  Google Scholar 

  14. 14. Molnar, A., Csorba, T., Lakatos, L., Varallyay, E., Lacomme, C., and Burgyan, J. (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single- stranded viral RNAs. Journal of Virology 79, 7812–7818.

    Article  PubMed  CAS  Google Scholar 

  15. 15. Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41, 95–98.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Ho, T.X., Rusholme, R., Dalmay, T., Wang, H. (2008). Cloning of Short Interfering RNAs from Virus-Infected Plants. In: Foster, G.D., Johansen, I.E., Hong, Y., Nagy, P.D. (eds) Plant Virology Protocols. Methods in Molecular Biology™, vol 451. Humana Press. https://doi.org/10.1007/978-1-59745-102-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-102-4_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-827-0

  • Online ISBN: 978-1-59745-102-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics