Skip to main content

Uptake, Assimilation, and Novel Metabolism of Nitrogen Dioxide in Plants

  • Protocol

Part of the book series: Methods in Biotechnology ((MIBT,volume 23))

Abstract

To understand the uptake and assimilation of nitrogen dioxide (NO2) in various plants, quantification of both inorganic nitrogen such as nitrate, nitrite and ammonium ions, and organic nitrogen (or Kjeldahl nitrogen) is vital. Thus, we first describe the quantification of these ions by the capillary electrophoresis method. It is noteworthy that the nitrite ion concentrations in plant tissues are somewhat controversial, and that we have previously reported possible causes of nitrite ion contamination from experimental tools. Details of fumigation of plants with NO2, and of nitrogen analysis of fumigated plant tissues are described. According to plant physiology textbooks, the total nitrogen taken up into the plant body should equal the sum of the inorganic nitrogen plus organic or Kjeldahl nitrogen. However, we have unexpectedly discovered that about one-third of the total nitrogen derived from NO2 taken up in the leaves of Arabidopsis thaliana is converted to neither inorganic nor Kjeldahl nitrogen, but instead to an as yet unknown nitrogen. We hereafter designate this nitrogen unidentified nitrogen (UN). Some details for the determination of the UN also are described.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wellburn, A. R., Barnes, J. D., Lucas, P. W., McLeod, A. R., and Mansfield, T. A. (1997) Controlled O3 exposures and field observations of O3 effects in the UK. In: Forest Decline and Ozone, (Sandermann, H., Wellburn, A. R., and Heath, R. L., eds.), Springer Verlag, Berlin, Germany, pp. 201–248.

    Google Scholar 

  2. Yunus, M., Singh, N., and Iqbal, M. (1996) Gobal status of air pollution: an overview. In: Plant Response to Air Pollution, (Yunus, M. and Iqbal, M., eds.), John Wiley and Sons Ltd., New York, NY, pp. 1–34.

    Google Scholar 

  3. Zeevaart, A. J. (1976) Some effects of fumigating plants for short periods with NO2. Environ. Pollut. 11, 97–108.

    Article  CAS  Google Scholar 

  4. Yoneyama, T. and Sasakawa, H. (1979) Transformation of atmospheric NO2 absorbed in spinach leaves. Plant Cell Physiol. 20, 263–266.

    CAS  Google Scholar 

  5. Wellburn, A. R. (1994) Nitrogen oxides. In: Air Pollution and Climate Change: The Biological Impact, (Wellburn, A. R., ed.), Longman Scientific and Technical, Essex, England, 57–82.

    Google Scholar 

  6. Morikawa, H., Takahashi, M., and Irifune, K. (1998) Molecular mechanism of the metabolism of nitrogen dioxide as an alternative fertilizer in plants. In: Stress Responses of Photosynthetic Organisms, (Satoh, K. and Murata, N., eds.), Elsevier Science, Amsterdam, The Netherlands, pp. 227–237.

    Google Scholar 

  7. Takahashi, M., Kondo, K., and Morikawa, H. (2003) Assimilation of nitrogen dioxide in selected plant taxa. Acta Biotechnol. 23, 241–247.

    Article  CAS  Google Scholar 

  8. Kawamura, Y., Takahashi, M., Ariumura, G., et al. (1996) Determination of levels of NO3 -, NO2 -, and NH4++ ions in leaves of various plants by capillary electrophoresis. Plant Cell Physiol. 37, 878–880

    Google Scholar 

  9. Kawamura, Y., Fukunaga, K., Umehara, A., Takahashi, M., and Morikawa, H. (2002) Selection of Rhodedendron mucornatum plants that have a high capacity for nitrogen dioxide uptake. Acta Biotechnol. 22, 113–120.

    Article  CAS  Google Scholar 

  10. Hakata, M., Takahashi, M., Zumft, G., Sakamoto, A., and Morikawa, H. (2003) Conversion of the nitrogen of nitrate and nitrogen dioxide to nitrous oxide in plants. Acta Biotechnol. 23, 249–257.

    Article  CAS  Google Scholar 

  11. Morikawa, H., Higaki, A., Nohno, M., et al. (1998) More than a 600-fold variation in nitrogen dioxide assimilation among 217 plant taxa. Plant Cell Environ. 21, 180–190.

    Article  Google Scholar 

  12. Morikawa, H. and Erkin, O. C. (2003) Basic processes in phytoremediation and some applications to air pollution control. Chemosphere 52, 1553–1558.

    Article  CAS  Google Scholar 

  13. Morikawa, H., Takahashi, M., Hakata, M., and Sakamoto, A. (2003) Screening and genetic manipulation of plants for decontamination of pollutants from the environments. J. Biotechnol. Adv. 22, 9–15.

    Article  CAS  Google Scholar 

  14. Morikawa, H., Takahashi, M., and Kawamura, Y. (2003) Air pollution clean up using pollutant-philic plants—metabolism of nitrogen dioxide and genetic manipulation of related genes. In: Phytoremediation: Transformation and Control of Contaminants, (McCutcheon, S. C. and Schnoor, J. L., eds.), John Wiley and Sons, Inc., New York, NY, pp. 765–786.

    Google Scholar 

  15. Goshima, N., Mukai, T., Suemori, M., Takahashi, M., Caboche, M., and Morikawa, H. (1999) Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense nitrite reductase mRNA. Plant J. 19, 75–80.

    Article  CAS  Google Scholar 

  16. Takahashi, M., Kohama, S., Hakata, M., et al. (2001) Production of mutants that have high ability to assimilate nitrogen dioxide by the irradiation of ion beams in Ficus stipulata, Ann. Rep. TIARA 39, 62–63.

    Google Scholar 

  17. Takahashi, M., Sasaki, Y., Ida, S., and Morikawa, H. (2001) Enrichment of nitrite reductase gene improves the ability of Arabidopsis thaliana plants to assimilate nitrogen dioxide. Plant Physiol. 126, 731–741.

    Article  CAS  Google Scholar 

  18. Morikawa, H., Takahashi, M., Sakamoto, A., et al. (2004) Formation of unidentified nitrogen in plants: an implication for a novel nitrogen metabolism. Planta 219, 14–22.

    Article  CAS  Google Scholar 

  19. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15, 473–497

    Article  CAS  Google Scholar 

  20. Vaucheret, H., Kronenberger, J., Lepingle, A., Vilaine, F., Boutin, J. P., and Caboche, M. (1992) Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J. 2, 559–569.

    CAS  Google Scholar 

  21. Bourgin, J. P., Chupeau, Y., and Missonier, C. (1979) Plant regeneration from mesophyll protoplasts of several Nicotiana species. Physiol Plant. 45, 288–292.

    Article  CAS  Google Scholar 

  22. Gatley, S. J. and Shea, C. (1991) Radiochemical and chemical quality-assurance methods for [13N]-ammonia made from a small volume H2 16O target. Appl. Rad. Isotop. 42, 793–796.

    Article  CAS  Google Scholar 

  23. Mariotti, A. (1983) Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303, 685–687.

    Article  CAS  Google Scholar 

  24. Conway, E. J. and Byrne, A. (1933) An absorption apparatus for the micro-determination of certain volatile substances. I. The micro-determination of ammonia. Biochem J. 27, 419–429.

    CAS  Google Scholar 

  25. Durner, J. and Klessig, D. F. (1999) Nitric oxide as a signal in plants. Curr. Opin. Plant Biol. 2, 369–374.

    Article  CAS  Google Scholar 

  26. Delledonne, M., Xia, Y., Dixon, R. A., and Lamb, C. (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585–588.

    Article  CAS  Google Scholar 

  27. Tun, N. N., Holk, A., and Scherer, G. F. E. (2001) Rapid increase of NO release in plant cell cultures induced by cytokinin. FEBS Lett. 509, 174–176.

    Article  CAS  Google Scholar 

  28. Wendehenne, D., Pugin, A., Klessig, D. F., and Durner, J. (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 6, 177–183.

    Article  CAS  Google Scholar 

  29. Chandok, M. R., Ytterberg, A. J., van Wijk, K. J., and Klessig, D. F. (2003) The pathogen-inducible nitric oxide synthetase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex. Cell 113, 469–482.

    Article  CAS  Google Scholar 

  30. Rockel, P., Strube, F., Rockel, A., Wildt, J., and Kaiser, W. M. (2002) Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot. 53, 103–110.

    Article  CAS  Google Scholar 

  31. Yamasaki, H., Sakihama, Y., and Takahashi, S. (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci. 4, 128–129.

    Article  Google Scholar 

  32. Wildt, J., Kley, D., Rockel, A., Rokel, P., and Segschneider, H. J. (1997) Emission of NO from several higher plant species. J. Geophys. Res. 102, 5919–5927.

    Article  CAS  Google Scholar 

  33. Takahashi, M., Konaka, D., Sakamoto, A., and Morikawa, H. (2005) Nocturnal uptake and assimilation of nitrogen dioxide by C3 and CAM plants. Z. Naturforsch. 60c, 279–284.

    Google Scholar 

  34. Bradstreet, R. B. (1965) The Kjeldahl digestion. In: The Kjeldahl Method for Organic Nitrogen, (Bradstreet, R. B., ed.), Academic Press, New York, NY, pp. 9–88.

    Google Scholar 

  35. Tanaka, T., Ida, S., Irifune, K., Oeda, K., and Morikawa, H. (1994) Nucleotide sequence of a gene for nitrite reductase from Arabidopsis thaliana. DNA Sequence 5, 57–61.

    CAS  Google Scholar 

  36. Kato, C., Takahashi, M., Sakamoto, A., and Morikawa, H. (2004) Differential expression of the nitrite reductase gene family in tobacco as revealed by quantitative competitive RT-PCR. J. Exp. Bot. 55, 1761–1763.

    Article  CAS  Google Scholar 

  37. Kacser, H. and Porteous, J. W. (1987) Control of metabolism: what do we have to measure? Trends Biochem. Sci. 12, 5–14.

    Article  CAS  Google Scholar 

  38. Sakamoto, A., Ueda, M., and Morikawa, H. (2002) Arabidopsis glutathionedependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase. FEBS Lett. 515, 20–24.

    Article  CAS  Google Scholar 

  39. Kondo, K., Takahashi, M., and Morikawa, H. (2002) Regeneration and transformation of a roadside tree Pittosporum tobira A. Plant Biotechnol. 19, 135–139.

    CAS  Google Scholar 

  40. Erkin, O. C., Takahashi, M., Sakamoto, A., and Morikawa, H. (2003) Development of regeneration and transformation systems for Rhaphiolepis umbellata L. plants using particle bombardment. Plant Biotechnol. 20, 145–152.

    CAS  Google Scholar 

  41. Shigeto, J., Yoshihara, S., Adam, S. E. H., Sueyoshi, K., Sakamoto, A., Morikawa, H., and Takahashi, M. (2006) Genetic engineering of nitrite reductase gene improves uptake and assimilation of nitrogen dioxide by Rhaphiolepis umbellate (Thumb) Makino. Plant Biotechnology 23, 111–116.

    CAS  Google Scholar 

  42. Goto, F., Toki, S., and Uchiyama, H. (1993) Inheritance of a co-transferred foreign gene in the progenies of transgenic rice plants. Transgen. Res. 2, 300–305.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research (nos. 13556002 and 16208033) from the Japan Society for the Promotion of Science, by the Research for the Future Program, Japan Society for the Promotion of Science (JSPS-RFTF96L00604) and by a Grant-in-Aid for Creative Scientific Research (no. 13GS0023) from the Japan Society for the Promotion of Science.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Takahashi, M., Matsubara, T., Sakamoto, A., Morikawa, H. (2007). Uptake, Assimilation, and Novel Metabolism of Nitrogen Dioxide in Plants. In: Willey, N. (eds) Phytoremediation. Methods in Biotechnology, vol 23. Humana Press. https://doi.org/10.1007/978-1-59745-098-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-098-0_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-541-5

  • Online ISBN: 978-1-59745-098-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics