Skip to main content

Detoxification of Soil Phenolic Pollutants by Plant Secretory Enzyme

  • Protocol
Book cover Phytoremediation

Part of the book series: Methods in Biotechnology ((MIBT,volume 23))

Abstract

The enormous growth of industrialization and agriculture has resulted in serious environmental pollution, and polychlorophenols are among the most hazardous pollutants. Because of the large investment required for traditional physical and chemical detoxification methods, engineering transgenic plants for phytoremediaton of polluted soil has received more and more attention. In most cases, however, the plants are employed to take up the pollutants and the toxic compounds are often not destroyed but merely accumulated or displaced. Recently, we developed a novel system of phytoremediation ex planta based on the overexpression of a secretory laccase that catalyzes the oxidation of various aromatic compounds, including 2,4,6-trichlorophenol. Because there are rich sources of various detoxifying enzymes, the technique of using plant exudation machinery for phytoremediation should be applicable to other types of pollutants in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta, S. S., Stadler, M., Noser, C. A., et al. (2002) Rapid total destruction of chlorophenols by activated hydrogen peroxide. Science 296, 326–328.

    Article  Google Scholar 

  2. Boyajian, G. E. and Carreira, L. H. (1997) Phytoremediation: a clean transition from laboratory to marketplace? Nat. Biotechnol. 15, 127–128.

    Article  CAS  Google Scholar 

  3. Watanabe, M. E. (2001) Can bioremediation bounce back? Nat. Biotechnol. 19,1111–1115.

    Article  CAS  Google Scholar 

  4. Salt, D. E., Smith, R. D., and Raskin, I. (1998) Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 643–668.

    Article  CAS  Google Scholar 

  5. Wang, G. D., Li, Q. J., Luo, B., and Chen, X. Y. (2004) Ex planta phytoremediation of trichlorophenol and phenolic allelochemicals via an engineered secretory laccase. Nat. Biotechnol. 22, 893–897.

    Article  Google Scholar 

  6. Blum, U., Shafer, S. R., and Lehman, M. E. (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soil: concepts vs. an experimental model. Crit. Rev. Plant Sci. 18, 673–693.

    Article  CAS  Google Scholar 

  7. Reigosa, M. J., Sanchez-Moreiras, A., and Gonzalez, L. (1999) Ecophysiological approach in allelopathy. Crit. Rev. Plant Sci. 18, 577–608.

    Article  CAS  Google Scholar 

  8. Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., and Vivanco, J. M. (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions.Science 301, 1377–1380.

    Article  CAS  Google Scholar 

  9. Wu, H., Haig, T., Pratley, J., Lemerle, D., and An, M. (2002) Biochemical basis for wheat seedling allelopathy on the suppression of annual ryegrass (Lolium rigidum).J. Agric. Food Chem. 50, pp. 4567–4571.

    Article  CAS  Google Scholar 

  10. Brunner, A. M., Busov, V. B., and Strauss, S. H. (2004) Poplar genome sequence:functional genomics in an ecologically dominant plant species. Trends Plant Sci. 9,49–56.

    Article  CAS  Google Scholar 

  11. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  12. Song, W.Y., Sohn, E. J., Martinoia, E., et al. (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat. Biotechnol. 21, 914–919.

    Article  CAS  Google Scholar 

  13. Bizily, S. P., Rugh, C. L., Summers, A. O., and Meagher, R. B. (1999) Phytoremediation of methylmercury pollution: mer B expression in Arabidopsis thaliana confers resistance to organomercurials. Proc. Natl. Acad. Sci. USA 96,6808–6813.

    Article  CAS  Google Scholar 

  14. Dhankher, O. P., Li, Y., Rosen, B. P., et al. (2002). Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ glutamylcysteine synthetase expression. Nat. Biotechnol. 20, 1140–1145.

    Article  CAS  Google Scholar 

  15. Lee, J., Bae, H., Jeong, J., et al. (2003) Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol. 133, 589–596.

    Article  CAS  Google Scholar 

  16. LeDuc, D. L., Tarun, A. S., Montes-Bayon, M., et al. (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol. 135, 377–383.

    Article  CAS  Google Scholar 

  17. Yoshida, H. (1883) Chemistry of lacquer (urushi). J. Chem. Soc. 43, 472–486.

    CAS  Google Scholar 

  18. Mayer, A. M. and Staples, R. C. (2002) Laccase: new functions for an old enzyme.Phytochemistry 60, 551–565.

    Article  CAS  Google Scholar 

  19. Heinzkill, M., Bech, L., Halkier, T., Schneider, P., and Anke, T. (1998) Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae).Appl. Environ. Microbiol. 64, 1601–1606.

    CAS  Google Scholar 

  20. Cardenas, W. and Dankert, J. R. (2000) Cresolase, catecholase and laccase activities in haemocytes of the red swamp crayfish. Fish Shellfish Immunol. 10, 33–46.

    Article  CAS  Google Scholar 

  21. Kurtz, M. B. and Champe, S. P. (1981) Dominant spore color mutants of Aspergillus nidulans defective in germination and sexual development. J. Bacteriol. 148,629–638.

    CAS  Google Scholar 

  22. Kurtz, M. B. and Champe, S. P. (1982) Purification and characterization of the conidial laccase of Aspergillus nidulans. J. Bacteriol. 151, 1338–1345.

    CAS  Google Scholar 

  23. Choi, G. H., Larson, T. G., and Nuss, D. L. (1992) Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol. Plant Microb. Interact. 5, 119–128.

    Article  CAS  Google Scholar 

  24. Bao, W., O’Mally, D. M., Whetten, R., and Sedero, R. R. (1993) A laccase associated with lignification in loblolly pine xylem. Science 260, 672–674.

    Article  CAS  Google Scholar 

  25. Ranocha, P., Chabannes, M., Chamayou, S., et al. (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol. 129, 145–155.

    Article  CAS  Google Scholar 

  26. Argyropoulos, D. S. (2001) Oxidative Delignification Chemistry. ACS Symposium Series 785. American Chemical Society, Washington, DC.

    Book  Google Scholar 

  27. Larson, T. G., Cassland, P., and Jonsson, L. J. (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase.Appl. Environ. Microbiol. 67, 1163–1170.

    Article  Google Scholar 

  28. Bauer, C. G., Kuehn, A., Gajovic, N., et al. (1999) New enzyme sensors for morphine and codeine based on morphine dehydrogenase and laccase. Fres. J. Anal.Chem. 364, 179–183.

    Article  CAS  Google Scholar 

  29. Leontievsky, A. A., Myasoedova, N. M., Baskunov, B. P., Golovleva, L. A., Bucke, C., and Evans, C. S. (2001) Transformation of 2,4,6-trichlorophenol by free and immobilized fungal laccase. Appl. Microbiol. Biotechnol. 57, 85–91.

    Article  CAS  Google Scholar 

  30. Pritchard, S., Peterson, C., Runion, G. B., Prior, S., and Rogers, H. (1997) Atmospheric CO2 concentration, N availability, and water status affect patterns of ergastic substance deposition in longleaf pine (Pinus palustris Mill.) foliage. Trees 11, 494–503.

    Google Scholar 

  31. Sambrook, J., Fritsch, E. F., and Maniatis, T. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  32. Min, K. L., Kim, Y. H., Kim, Y. W., Jung, H. S., and Hah, Y. C. (2001) Characterization of a novel laccase produced by the wood-rotting fungus Phellinus ribis. Arch. Biochem. Biophys. 392, 279–286.

    Article  CAS  Google Scholar 

  33. Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16,735–743.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Wang, GD., Chen, XY. (2007). Detoxification of Soil Phenolic Pollutants by Plant Secretory Enzyme. In: Willey, N. (eds) Phytoremediation. Methods in Biotechnology, vol 23. Humana Press. https://doi.org/10.1007/978-1-59745-098-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-098-0_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-541-5

  • Online ISBN: 978-1-59745-098-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics