Skip to main content

Using Quantitative Trait Loci Analysis to Select Plants for Altered Radionuclide Accumulation

  • Protocol
Phytoremediation

Part of the book series: Methods in Biotechnology ((MIBT,volume 23))

Abstract

The uptake and accumulation of toxic cations, including radionuclides, by plants growing on contaminated soils can adversely affect the health of humans and livestock. Using natural genetic variation and molecular-based quantitative genetic approaches, it is possible to identify chromosomal loci that underpin genetic variation in plant shoot radionuclide accumulation. Resolving these loci could allow the identification of candidate genes impacting on shoot radionuclide accumulation. Such methods enable gene-based crop selection or improvement strategies to be contemplated to either (1) exclude radionuclides from the food chain to minimize health risks or (2) enhance radionuclide phytoextraction. Using radiocesium (137Cs) as a case study, this chapter provides an overview of how natural genetic variation and quantitative trait loci approaches in a model plant species, Arabidopsis thaliana, can be used to identify candidate genes/genetic loci impacting on radionuclide accumulation by plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daar, A. S., Thorsteinsdóttir, H., Martin, D. K., Smith, A. C., Nast, S., and Singer, P. A. (2002) Top ten biotechnologies for improving health in developing countries. Nat. Genet. 32, 229–232.

    Article  CAS  Google Scholar 

  2. http://www.strategy-ec.org.uk. Last accessed on.

  3. White, P. J., Swarup, K., Escobar-Gutiérrez, A. J., Bowen, H. C., Willey, N. J., and Broadley, M. R. (2003) Selecting plants to minimise radiocaesium in the food chain. Plant Soil 249, 177–186.

    Article  CAS  Google Scholar 

  4. Yera, T. S., Vallejo, R., Tent, J., Rauret, G., Omelyanenko, N., and Ivanov, Y. (1999) Mulching as a countermeasure for crop contamination within the 30 km zone of Chernobyl nuclear power plant. Environ. Sci. Technol. 33, 882–886.

    Article  CAS  Google Scholar 

  5. Zhu, Y. G. and Shaw, G. (2000) Soil contamination with radionuclides and potential remediation. Chemosphere 41, 121–128.

    Article  CAS  Google Scholar 

  6. Commission of the European Communities (2000) Council Regulations (EC) No 616/2000 of 20 March 2000 amending Regulation (EEC) No 737/90 on the conditions governing imports of agricultural products originating in third countries following the accident at the Chernobyl nuclear power station. Official Journal of the European Communities, L 075, 1–2.

    Google Scholar 

  7. Dushenkov, S. (2003) Trends in phytoremediation of radionuclides. Plant Soil 249, 167–175.

    Article  CAS  Google Scholar 

  8. Willey, N., Hall, S., and Mudiganti, A. (2001) Assessing the potential of phytoremediation at a site in the U.K. contaminated with 137Cs. Int. J. Phytorem. 3, 321–333.

    Article  CAS  Google Scholar 

  9. Watt, N. R., Willey, N. J., Hall, S. C., and Cobb, A. (2002) Phytoextraction of 137Cs: the effect of soil 137Cs concentration on 137Cs uptake by Beta vulgaris. Acta Biotechnol. 22, 183–188.

    Article  CAS  Google Scholar 

  10. Gaymard, F., Pilot, G., Lacombe, B., et al. (1998) Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell 94, 647–655.

    Article  CAS  Google Scholar 

  11. White, P. J. and Broadley, M. R. (2000) Mechanisms of caesium uptake by plants. New Phytol. 147, 241–256.

    Article  CAS  Google Scholar 

  12. Broadley, M. R., Escobar-Gutiérrez, A. J., Bowen, H. C., Willey, N. J., and White, P. J. (2001) Influx and accumulation of Cs+ by the akt1 mutant of Arabidopsis thaliana (L.) Heynh. lacking a dominant K+ transport system. J. Exp. Bot. 52, 839–844.

    Google Scholar 

  13. White, P. J. and Davenport, R. J. (2002) The voltage-independent cation channel in the plasma membrane of wheat roots is permeable to divalent cations and may be involved in cytosolic Ca2+ homeostasis. Plant Phys. 130, 1386–1395.

    Article  CAS  Google Scholar 

  14. White, P., Bowen, H., Broadley, M., Hammond, J., Hampton, C., and Payne, K. (2004) The mechanisms of caesium uptake by plants. In: Proceedings of the International Symposium on Radioecology and Environmental Dosimetry, Institute of Environmental Sciences, Rokkasho, Aomori, Japan, 22–24 October 2003, pp. 255–262.

    Google Scholar 

  15. Rubio, F., Santa-María G, E., and Rodríguez-Navarro, A. (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Phys. Plant. 109, 34–43.

    Article  CAS  Google Scholar 

  16. Mäser, P., Thomine, S., Schroeder, J. I., et al. (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126, 1646–1667.

    Article  Google Scholar 

  17. The Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Google Scholar 

  18. Hirschi, K. D. (2003) Insertional mutants: a foundation for assessing gene function. Trends Plant Sci. 8, 205–207.

    Article  CAS  Google Scholar 

  19. Broadley, M. R., Willey, N.J., and Mead, A. (1999) A method to assess taxonomic variation in shoot caesium concentration among flowering plants. Environ. Poll. 106, 341–349.

    Article  CAS  Google Scholar 

  20. Frissel, M. J., Deb, D. L., Fathony, M., et al. (2002) Generic values for soil-to-plant transfer factors of radiocesium. J. Environ. Radioac. 58, 113–128.

    Article  CAS  Google Scholar 

  21. Øhlenschlæger, M. and Gissel-Nielsen, G. (1991) Differences in the ability for barley and rye grass varieties to absorb cesium through the roots. Acta Agric. Scand. 41, 321–328.

    Article  Google Scholar 

  22. Alonso-Blanco, C. and Koornneef, M. (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci. 5, 22–29.

    Article  CAS  Google Scholar 

  23. Kearsey, M. J. and Pooni, H. S. (1996) The Genetical Analysis of Quantitative Traits. Chapman and Hall, London, UK.

    Google Scholar 

  24. Lister, C. and Dean, C. (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J. 4, 745–750.

    CAS  Google Scholar 

  25. Reiter, R. S., Williams, J. G. K., Feldmann, K. A., Antoni Rafalski, J., Tingey, S. V., and Scolnik, P. A. (1992) Global and local genome mapping in Arabidopsis thaliana by using recombinant inbred lines and random amplified polymorphi DNAs. Proc. Natl. Acad. Sci. USA 89, 1477–1481.

    Article  CAS  Google Scholar 

  26. Holub, E. B. and Beynon, J. L. (1997) Symbiology of mouse-ear cress (Arabidopsis thaliana) and oomycetes. Advan. Bot. Res. 24, 227–273.

    Article  Google Scholar 

  27. Deslandes, L., Pileur, F., Liaubet, L., et al. (1998) Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum. Mol. Plant-Micro Interact. 11, 659–667.

    Article  CAS  Google Scholar 

  28. Loudet, O., Chaillou, S., Camilleri, C., Bouchez, D., and Daniel-Vedele, F. (2002) Bay-0 × Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor. App. Gen. 104, 1173–1184.

    Article  CAS  Google Scholar 

  29. Alonso-Blanco, C., Peeters, A. J. M., Koornneef, M., et al. (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J. 14, 259–271.

    Article  CAS  Google Scholar 

  30. Kearsey, M. J. and Hyne, V. (1994) QTL analysis: a simple’ marker-regression’ approach. Theor. App. Gen. 89, 698–702.

    Google Scholar 

  31. Haley, C. S. and Knott, S. A. (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Hered. 69, 315–324.

    CAS  Google Scholar 

  32. van Ooijen, J. and Maliepaard, C. (1996) MAPQTLTM, Version 3.0: software for the calculation of QTL positions on genetic maps. CPRO-DLO, Wageningen, The Netherlands.

    Google Scholar 

  33. Seaton, G. (2000) The QTL Café. http://www.bham.ac.uk/g.g.seaton.Lastaccessed.

  34. Jansen, R. C. (1993) Interval mapping of multiple quantitative trait loci. Gen. 135, 205–211.

    CAS  Google Scholar 

  35. Loudet, O., Chaillou, S., Merigout, P., Talbotec, J., and Daniel-Vedele, F. (2003) Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol. 131, 345–358.

    Article  CAS  Google Scholar 

  36. Van Berloo, R. and Stam, P. (1999) Comparison between marker-assisted selection and phenotypical selection in a set of Arabidopsis thaliana recombinant inbred lines. Theor. App. Gen. 98, 113–118.

    Article  Google Scholar 

  37. Rauh, B. L. Basten C., and Buckler, E. S. (2002) Quantitative trait loci analysis of growth response to varying nitrogen sources in Arabidopsis thaliana. Theor. App. Gen. 104, 743–750.

    Article  CAS  Google Scholar 

  38. Kobayashi, Y. and Koyama, H. (2002) QTL analysis of Al tolerance in recombinant inbred lines of Arabidopsis thaliana. Plant Cell Physiol. 43, 1526–1533.

    Article  CAS  Google Scholar 

  39. Hoekenga, O. A., Vision, T. J., Shaff, J. E., et al. (2003) Identification and characterizationof aluminium tolerance loci in Arabidopsis (Landsberg erecta × Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol. 132, 936–948.

    Article  CAS  Google Scholar 

  40. Bentsink, L., Yuan, K., Koornneef, M., and Vreugdenhil, D. (2003) The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Theor. App. Gen. 106, 1234–1243.

    CAS  Google Scholar 

  41. Payne, K. A., Bowen, H. C., Hammond, J. P., et al (2004) Natural genetic variation in caesium (Cs) accumulation by Arabidopsis thaliana. New Phytol. 162, 535–548.

    Article  CAS  Google Scholar 

  42. Jansen, R. C. and Stam, P. (1994) High resolution of quantitative traits into multiple loci via interval mapping. Gen. 136, 1447–1455.

    CAS  Google Scholar 

  43. Alonso-Blanco, C., El Assal, S. E., Coupland, G., and Koornneef, M. (1998) Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Gen. 149, 749–764.

    CAS  Google Scholar 

  44. van Ooijen, J. (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Hered. 83, 613–624.

    Article  Google Scholar 

  45. Jansen, R. C., van Ooijen, J. W., Stam, P., Lister, C., and Dean, C. (1995) Genotypeby environment interaction in genetic mapping of multiple quantitative trait loci. Theor. App. Gen. 91, 33–37.

    CAS  Google Scholar 

  46. Visscher, P. M., Thompson, R., and Haley, C. S. (1996) Confidence intervals in QTL mapping by bootstrapping. Gen. 143, 1013–1020.

    CAS  Google Scholar 

  47. Lander, E. S. and Botstein, D. (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Gen. 121, 185–199.

    CAS  Google Scholar 

  48. Martinez, O. and Curnow, R. N. (1992) Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor. App. Gen. 85, 480.

    Google Scholar 

  49. van Ooijen, J. W. (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor. App. Gen. 84, 803.

    Google Scholar 

  50. Mangin, B., Goffinet, B., and Rebai, A. (1994) Constructing confidence intervals for QTL location. Gen. 138, 1301–1308.

    CAS  Google Scholar 

  51. Efron, B. (1979) Bootstrap methods; another look at the jacknife. Ann. Statist. 7, 1–26.

    Article  Google Scholar 

  52. Tuinstra, M. R., Ejeta, G., and Goldsbrough, P. B. (1997) Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor. App. Gen. 95, 1005–1011.

    Article  CAS  Google Scholar 

  53. Swarup, K., Alonso-Blanco, C., Lynn, J. R., et al. (1999) Natural allelic variation identifies new genes in the Arabidopsis circadian system. Plant J. 20, 67–77.

    Article  CAS  Google Scholar 

  54. Koumproglou, R., Wilkes, T. M., Townson, P., et al. (2002) STAIRS: a new genetic resource for functional genomic studies of Arabidopsis. Plant J. 31, 355–364.

    Article  CAS  Google Scholar 

  55. El-Assal, S. E.-D., Alonso-Blanco, C., Peeters, A. J. M., Raz, V., and Koornneef, M. (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nature Gen. 29, 435–440.

    Article  CAS  Google Scholar 

  56. Borevitz, J. O. and Nordborg, M. (2003) The impact of genomics on the study of natural variation in Arabidopsis. Plant Physiol. 132, 718–725.

    Article  CAS  Google Scholar 

  57. King, G. J. (2002) Through a genome darkly: comparative analysis of plant chromosomal DNA. Plant Mol. Biol. 48, 5–20.

    Article  CAS  Google Scholar 

  58. Li, G., Gao, M., Yang, B., and Quiros, C. F. (2003) Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor. App. Gen. 107, 168–180.

    CAS  Google Scholar 

  59. http://gnome.agrenv.mcgill.ca/tinker/pgiv/qtltitle.htm. Last accessed.

Download references

Acknowledgments

Modified figures and tables have been adapted from an original paper with the kind permission of Blackwell Publishing Ltd, Oxford, UK, on behalf of the New Phytologist Trust.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Payne, K.A., Bowen, H.C., Hammond, J.P., Hampton, C.R., White, P.J., Broadley, M.R. (2007). Using Quantitative Trait Loci Analysis to Select Plants for Altered Radionuclide Accumulation. In: Willey, N. (eds) Phytoremediation. Methods in Biotechnology, vol 23. Humana Press. https://doi.org/10.1007/978-1-59745-098-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-098-0_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-541-5

  • Online ISBN: 978-1-59745-098-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics