Skip to main content

Phytoremediation in China

Inorganics

  • Protocol
Phytoremediation

Part of the book series: Methods in Biotechnology ((MIBT,volume 23))

Abstract

There is an old saying in China &“food is heaven for people while soil is the mother for food.” Soil is considered to be one of the most important natural resources that people are dependent upon. However, more and more anthropogenic and natural factors are speeding up soil contamination, which poses a potential threat to human health and the environment. The situation is getting worse in some parts of the People’s Republic of China although the trend has been slowing down in recent years. The main contaminants causing degradation of the soil in China include heavy metals, radionuclides, and organic pollutants. In this chapter, the focus is on soil contamination by heavy metals and other inorganic pollutants in China, and the state-of-the-art green remediation technologies for them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dong, Y. H. and Zhang, T. L. (2003) Sustainable management of soil resources for food safety. Soils 35, 182–186.

    Google Scholar 

  2. Wang, Y. F., Dong, X., Wang, L., and Han, D. (2003) Prerequisition, current situ-ation and countermeasures for the development of nuisanceless agriculture in Liaonin Province. Chin. J. Soil Sci. 34, 370–373.

    Google Scholar 

  3. Jin, L. P. (2001) Twenty percent of arable lands contaminated with three industrial wastes in Zhejiang Province. Zhejiang Daily News of Science and Technology, Nov. 28: A1.

    Google Scholar 

  4. Zhao, L. F., Huang, P. W., Zhang, Z. X., and Xie, D. K. (2000) The current state of the arable lands and water resources in Leqing City and improvement strate-gies. Zhejiang Agricultural Science 1, 25–26.

    Google Scholar 

  5. Li, Q. L. and Wang, Y. (2000) Variation of heavy metal concentrations in the vegetable grown in the vegetable producing bases of the Zhongqing City suburbs. Rural Environ. Dev. 17, 42–44.

    Google Scholar 

  6. Yang, X. E., Yu, J. D., Nie, W. Z., and Zhu, C. (2002) Quality of agricultural environmental and agricultural food safety. Rev. Agric. Sci. Technol. 4, 3-9.

    Google Scholar 

  7. Xie, J. Y. (2002) Investigation and evaluation of the current state of soil contami-nation by heavy metals in Baoding, Hebei Province. Bulletin of Hebei Agricultural University 25, 38–41.

    Google Scholar 

  8. Zhou, Z. Y. (1998) Study of factors resulting in contamination with nitrite and nitrate in Chinese vegetables, and countermeasure strategies. Environ. Sci. Prog. 7, 1–3.

    CAS  Google Scholar 

  9. Tang, S. R. (2002) Bioremediation of low-level radionuclides in soil-water substrates. Chin. J. Appl. Ecol. 13, 243–246.

    CAS  Google Scholar 

  10. National Environmental Protection Bureau (NEPB) (1996) Remediation of Contamination Resulting from Uranium Mining and Refinery. Chinese Environmental Science Press, Beijing, China.

    Google Scholar 

  11. Chen, T. B. (1998) More attention should be paid to soil contamination in China. Daily News of Science and Technology, Dec. 22: A3.

    Google Scholar 

  12. Liao, Z. J. (1992) Environmental Chemistry and Biological Effects of Trace Elements. China Environmental Science Press, Beijing, P. R. China.

    Google Scholar 

  13. Tang, S. R. (1996) Hyperaccumulators. Agri. Environ. Dev. 3, 14–18.

    Google Scholar 

  14. Tang, S. R., Huang, C. Y., and Zhu, Z. X. (1996) Using plants to remediate heavy metal contaminated soils. Adv. Environ. Sci. 4, 10–15.

    CAS  Google Scholar 

  15. Dai, S. G. Liu, X. Q., and Xu, H. (1998) Progress on phytoremediation of con-taminated soils. Shanghai Environ. Sci. 17, 25–31.

    CAS  Google Scholar 

  16. Gong, Y. H., Wang, J. R., and Gao, J. F. (1998) Phytoremediation and its application to environmental protection. Agro-Environ. Protec. 17, 268–270.

    Google Scholar 

  17. Shen, D. Z. (1998) Phytoremediation of contaminated soil. Chin. J. Ecol. 17, 59–64.

    Google Scholar 

  18. Cheng, Y. C. (1999) Bioremediation of contaminated soils. Adv. Environ. Sci. 6, 7–11.

    Google Scholar 

  19. Luo, Y. M. (1999) Phytoremediation of heavy metal contaminated soils. Soil 5, 261–265.

    Google Scholar 

  20. Sang, W. L. and Kong, F. X. (1999) Advances in research on phytoremediation. Adv. Environ. Sci. 7, 40–44.

    CAS  Google Scholar 

  21. Tang, S. R. and Wilke, B. M. (1999) Phytoremediation and agrobiological envi-ronmental engineering. Trans. Chin. Soc. Agric. Eng. 15, 21–26.

    Google Scholar 

  22. Shen, Z. G. and Chen, H. M. (2000) Bioremediation of heavy metal polluted soils. Rural Eco-Environ. 16, 39–44.

    Google Scholar 

  23. Wang, X. C., Shi, W. M., and Cao, Z. H. (2000) Phytoremediation of heavy met-als in soil—a green and clean technique. Acta Agric. Nucl. Sinica 14, 315–320.

    CAS  Google Scholar 

  24. Zhao, A. F., Zhao, X., and Chang, X. L. (2000) Advances in research on phyto-remediation of contaminated soil. Chin. J. Soil Sci. 31, 43–46.

    CAS  Google Scholar 

  25. Zhao, Z. Q., Niu, J. F., and Quan, X. (2000b) Progress in phytoremediation of toxic metals from the environment. Research of Environ. Sci. 13, 54–57.

    Google Scholar 

  26. Chu, G. X. and Ren, G. (2001) Advances in phytoremediation and soil pollution by heavy metals. J. Shihezi University (Natural Sci.) 5, 342–346.

    CAS  Google Scholar 

  27. Liu, X. M., Nie, J. H., and Wang, Q. R. (2001) Advances in research on phyto-remediation of heavy metal contaminated soil. J. Gansu Agric. Uni. 36, 8–13.

    Google Scholar 

  28. Peng, Z. R., Wang, Y. F., and Xu, B. X. (2001) Chelate-induced phytoremediation of contaminated soils by heavy metals. Shanghai Chemistry 17, 4–7.

    Google Scholar 

  29. Tang, S. R. (2001) Distribution of hyperaccumulators in genera and family as well as at time and space. Rural Eco-Environ. 17, 12–16.

    Google Scholar 

  30. Wei, C. Y. and Chen, T. B. (2001) Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad. Acta Ecol. Sinica 21, 1196–1203.

    Google Scholar 

  31. Zhou, Q. X. and Song, Y. F. (2001) Technological implication of phytoremedia-tion and its application in environmental protection. J. Safety Environ. 13, 48–53.

    Google Scholar 

  32. Zhong, Z. K. and Gao, Z. H. (2001) The mechanism of phytoremediation and its application prospect. World Fores. Res. 14, 23–28.

    Google Scholar 

  33. Jiao, F. C., Mao, X., and Li, R. Z. (2002) Strategies and application of clean-up of environmental pollutants by plants. Agro-Environ. Protec. 21, 281–284.

    Google Scholar 

  34. Leng, J., Jie, Y. C., and Xu, Y. (2002) The state of the art in utilization of plants to clean up heavy metal contaminated soils and a future development. Chin. J. Soil Sci. 33, 467–470.

    CAS  Google Scholar 

  35. Liu, G. H. and Shu, H. L. (2002) Phytoremediation of soils contaminated with heavy metals. Jiangxi Forestry Sci. 2, 30–31.

    Google Scholar 

  36. Wei, C. Y. and Chen, T. B. (2002) The state of the art in research and application of phytoremediation of heavy metal contaminated soils. Adv. Earth Sci. 17, 833–839.

    Google Scholar 

  37. Wu, Z. H. (2002) Advances in phytoremediation of soils contaminated with heavy metals. J. Yancheng Institute Technol. 15, 53–57.

    CAS  Google Scholar 

  38. Wu, Z. H., Zhang, Y. F., Wang, X. R., and Hu, X. (2002) Application of gene tech-nology in phytoremediation fro contaminated soil by heavy metals. Agro-Environ. Protec. 21, 84–86.

    Google Scholar 

  39. Zhou, N. Y. and Wang, R. W. (2002) Phytoremediation—new approach of heavy metal cleanup from heavy metal-polluted soils. J. Chin. Biotech. 22, 53–57.

    Google Scholar 

  40. Zhang, K. S. and Liang, J. D. (2002) Roles of rhizosphere in remediation of con-taminated soils and its mechanisms. Chin. J. Appl. Ecol 14, 143–147.

    Google Scholar 

  41. Zhou, G. H., Huang, H. Z., and He, H. L. (2002) Phytoremediation: a new approach for the remediation of heavy metal-contaminated soils. Techniq. Equip. Environ. Pollut. Control 3, 33–39.

    CAS  Google Scholar 

  42. Fang, X. H. and Qiu, R. L. (2003) Advaces on study of the role of organic chela-tors on phytoremediation of nickel-contaminated soil. Techniq. Equip. Environ. Pollut. Control 3, 1–5.

    Google Scholar 

  43. Li, F., Zang, S., and Luo, Y. (2003) Bioremediation of contaminated soils: a review. Chin. J. Ecology 22, 35–39.

    Google Scholar 

  44. Tang, S. R., Huang, C. Y., and Zhu, Z. X. (1997) Commelina communis L: copper hyperaccumulator found at Tongling city, Anhui province of China. Pedosphere 24, 10–11.

    Google Scholar 

  45. Tang, S. R., Wilke, B. M., and Huang, C. Y. (1999) The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People’s Republic of China. Plant Soil 209, 225–232.

    Article  CAS  Google Scholar 

  46. Shu, W. S., Yang, K. Y., Zhang, Z. Q., Yang, B., and Lan, C. Y. (2001) Flora and heavy metals in dominant plants growing on an ancent copper spoil heap on Tonglushan in Hubei Province, China. Chin. J. Appli. Environ. Biol. 7, 7–12.

    Google Scholar 

  47. Tang, S. R., Wilke, B. M., and Brooks, R. R. (2001) Heavy-metal uptake by metal-tolerant Elsholtzia haichowensis and Commelina communis from China. Comm. Soil Sci. and Plant Anal. 32, 895–906.

    Article  CAS  Google Scholar 

  48. Tang, S. R. and Xi, L. (2002) Accumulation of chromium by Commelina commu-nis L. grown in solution supplied with different concentrations of Cr and L-histi-dine. Bullet. Zhejiang University (Sciences) 32, 232–236.

    Article  Google Scholar 

  49. Tang, S. R. and Fang, Y. H. (2001) Copper accumulation by Polygonum micro-cephalum D. Don and Rumex hastatus D.Don from copper mining spoils in Yunnan Province, P. R. China. Environ. Geol. 40, 902–907.

    Article  CAS  Google Scholar 

  50. Li, H. Y., Tang, S. R., and Zheng, J. M. (2005) Copper tolerance and accumulation Rumex acetosa Linn., Polygonum microcephalum D. Don, and Rumex hastatus D. Don. Bulletin of Science and Technology, 21(4): 480–484 (In Chinese with English summary).

    Google Scholar 

  51. Wang, C. C. and Shen, Z. G. (2001) Uptake of Cd by three species of plants and responses of mung bean to Cd toxicity. J. Nanjing Agric. Uni. 24, 9–13.

    CAS  Google Scholar 

  52. Huang, T.C.B., Guo, S. L., Chen, X. M., and Huang, P. Y. (2001) Absorption and accumulation of four heavy metals by eleven weeds in Jinhua, Zhejiang. Agro-Environ. Protec. 20, 225–228.

    Google Scholar 

  53. Wang, J. Q., Liu, B., and Su, D. C. (2003) Selection of oilseed rapes as a hyper-accumulator cadmium. J. Agric. Uni. Hebei 26, 13–16.

    CAS  Google Scholar 

  54. Yang, X. E., Long, X. X., Nie, W. Z., and Fu, C. X. (2002) Sedum alfredii:a new zinc hyperaccumulator. Sci. Bulletin 47, 1003–1006.

    Google Scholar 

  55. He, B. Yang, X. E. Ni, W. Z., Wei, Y. Z., Long, X. X., and Ye, Z. Q. (2002) Sedum alfredii: a new lead-accumulating ecotype. Acta Botanica Sinica 44, 1365–1370.

    CAS  Google Scholar 

  56. Xue, S. G., Chen, Y. X., Lin, Q., Xu, S., and Wang, Y. P. (2003) Phytolacca acinosa Roxb. (Phytolaccaceae): a new manganese hyperaccumulator plant from Southern China. Acta Ecologica Sinica 23, 935–937.

    Google Scholar 

  57. Wang, Q. R., Cui, Y. S., Liu, X. M., Dong, Y. T., and Christie, P. (2003) Soil con-tamination and plant uptake of heavy metals at polluted sites in China. J. Environ. Sci. Health Part A Tox. Hazard Subst. Environ. Eng. 38, 823–838.

    Google Scholar 

  58. Li, H. Y., Tang, S. R., and Zheng, J. M. (2003) Copper contents in two species plants of Compositae growing on copper mining spoils. Rural Eco-Environ. 19, 53–55.

    Google Scholar 

  59. Su, D. C. and Wong, J. W. C. (2002) The phytoremediation potential of oilseed rape (B. juncea) as a hyperaccumulator for cadmium contaminated soil. China Environ. Sci. 22, 48–51.

    CAS  Google Scholar 

  60. Chen, T. B., Wei, C. Y., Huang, Z. C., Huang, Q. F., Lu, Q. G., and Fan, J. L. (2002) Arsenic hyperaccumulator Pteris vittata L. and its accumumulation char-acteristics of arsenic. Sci. Bullet. 47, 207–210.

    Google Scholar 

  61. Wei, C. Y., Chen, T. B., Huang, Z. C., and Zhang, X. Q. (2002) Cretan Brake (Pteris cretica L.): an arsenic-accumulating plant. Acta Ecologic Sinica 22, 777–778.

    Google Scholar 

  62. Wei, Z. G., Yin, M., Zhang, X., et al. (2001) Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi region (Southern China). Environ. Pollut. 114, 345–355.

    Article  CAS  Google Scholar 

  63. Hong, F. S., Wei, Z. G., Tao, Y., et al. (1999) Distribution of rare earth elements and structure characterization of chlorophyll-lanthanum in a natural plant fern Dicranopteris dichotoma. Acta Botanica Sinica 41, 851–854.

    CAS  Google Scholar 

  64. Sheng, L. X., Ma, X. F., and Wang, Z. P. (2002) Study on the recovery and control of the alkili-saline lands in Songnen Plain. J. Northeast Normal University 34, 30–35.

    CAS  Google Scholar 

  65. Wu, L. H., Luo, Y. M., and Wang, H. Z. (2001) Cheleting agents induced phyto-remediation of copper contaminated dry red soil. Chin. J. Appl. Ecol. 12, 435–438.

    CAS  Google Scholar 

  66. Wu, L. H., Luo, Y. M., and Zhang, H. B. (2001) Study of environmental risk with utilization of organic chelating agents to enhance phytoremediation I Efftect of EDTA on TOC in mixed contaminated soil and dynamic variations of heavy metals. Soil 33, 189–192.

    CAS  Google Scholar 

  67. Wu, L. H., Luo, Y. M., and Lu, R. H. (2000) Study of organic adjustment for phyto-remediation of copper contaminated soils II Mobilization of rhizospheric soil copper by organic chemicals. Soil 32, 67–70.

    CAS  Google Scholar 

  68. Zhang, J. S., Li, H. F., and Yi, C. J. (1999) Effect of organic acids on uptake of cadmium by rice. Agro-Environ. Protection 18, 278–280.

    Google Scholar 

  69. Zhang, J. S., Li, H. F., and Yi, C. J. (1999) Effect of organic acids on mobilization of cadmium in soil and uptake of cadmium by wheat. Acta Pedologica Sinica 36, 61–66.

    CAS  Google Scholar 

  70. Sheng, Z. G., Liu, Y. L., and Cheng, H. M. (1998) Effect of chelating agents on uptake of zinc, copper, manganese, and iron by heavy metal hyperaccumulator Thlaspi caerulescens. Acta Phytophysiol. Sinica 24, 340–346.

    Google Scholar 

  71. Jiang, X. J., Luo, Y. M., Zhao, Q. G., and Ge, Y. Y. (2003) The role of EDTA in Cd absorption and translocation by Indian mustard. Acta Pedologica Sinica 40, 205–209.

    CAS  Google Scholar 

  72. Chen, Y. H., Li, X. D., Liu, H. Y., and Shen, Z. G. (2002) The potential of Indian mustard (Brassica juncea L.) for phytoremediation of Pb-contaminated soils with the aid of EDTA addition. J. Nanjing Agric. Uni. 25, 15–18.

    CAS  Google Scholar 

  73. Wei, S. H., Zhou, Q. X., Zhang, K. S., and Liang, J. D. (2002) Roles of rhizo-sphere in remediation of contaminated soils and its mechanisms. Chin. J. Appl. Ecol. 14, 143–147.

    Google Scholar 

  74. Huang, Y., Chen, Y., and Tao, S. (2000) Effect of rhizospheric environment of VA-mycorrhizal plants on forms of Cu, Zn, Pb and Cd in polluted soil. Chin. J. Appl. Ecol. 11, 431–434.

    CAS  Google Scholar 

  75. Wu, S. C., Luo, Y. M., Jiang, X. J., et al. (2000) Study of phytoremediation of heavy metal contaminated soils. Soil 2, 75–78.

    Google Scholar 

  76. Karenlampi, S., Schat, H., Vangronsveld, J., et al. (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ. Pollut. 107, 225–231.

    Article  CAS  Google Scholar 

  77. Tang, S. R., Xi, L., Zheng, J. M., and Li, H. Y. (2003) The responses of Indian mustard and sunflower growing on copper contaminated soil to elevated CO 2. Bull. Environ. Contam. Toxicol. 71, 988–997.

    Article  CAS  Google Scholar 

  78. Entry, J. A., Vance, N. C., and Hamilton, M. A. (1996) Phytoremediation of soil contaminated with low concentrations of radionuclides. Water, Air, Soil Pollut. 88, 167–176.

    CAS  Google Scholar 

  79. Khan, A. G., Kuek, C., and Chaudhry, T. M. (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41, 197–207.

    Article  CAS  Google Scholar 

  80. Huang, J. W., Chen, J., Berti, W. R., and Cunningham, S. D. (1997) Phyto-remediation of lead-contaminated soils: role of synthetic chelates in lead phyto-extraction. Environ. Sci. Technol. 31, 800–805.

    Article  CAS  Google Scholar 

  81. Huang, J. W., Chen, J., and Cunningham, S. D. (1997) Phytoextraction of lead from contaminated soils. In: Phytoremediation of Soil and Water Contaminants, (Kruger, E. I., Anderson, T. A., and Coats, J. R., eds.), ACS Symposium Series No. 664. American Chemical Society, Washington, DC,283–297.

    Chapter  Google Scholar 

  82. Anderson, C. W. N., Brooks, R. R., Stewart, R. B., and Simcock, R. (1998) Harvesting a crop of gold in plants. Nature 395, 553–554.

    Article  CAS  Google Scholar 

  83. Blaylock, M. J., Salt, D. E., Dushenkov, S., et al. (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31, 860–865.

    Article  Google Scholar 

  84. Clemens, S., Palmgren, M. G., and Kramer, U. (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7, 309–315.

    Article  CAS  Google Scholar 

  85. Kramer, U. and Chardonnens, A. (2001) The use of transgenic plants in the bio-remediation of soils contaminated with trace elements. Appl Microbiol Biotechnol. 55, 661–672.

    Article  CAS  Google Scholar 

  86. Bizily, S. P., Rugh, C. L., and Meagher, R. B. (2000) Phytodetoxification of hazar-dous organomercurials by genetically engineered plants. Nature Biotech. 18, 213–217.

    Article  CAS  Google Scholar 

  87. Pilon-Smits, E. and Pilon, M. (2000) Breeding mercury-breathing plants for envi-ronmental cleanup. Trends Plant Sci. 5, 235–236.

    Article  CAS  Google Scholar 

  88. Rugh, C. L., Senecoff, J., Meagher, R. B., and Merkle, S. A. (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nature Biotech. 16, 925–928.

    Article  CAS  Google Scholar 

  89. Black, H. (1995) Absorbing possibilities: phytoremediation. Environ. Health. Perspec. 103, 1106–1108.

    Article  CAS  Google Scholar 

  90. Baker, A. J. M. (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J. Plant Nutr. 3, 643–654.

    Article  CAS  Google Scholar 

  91. Negri, M. C. and Hinchman, R. R. (2000) The use of plants for the treatment of radionuclides. In: Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment, (Raskin, I. and Ensley, B., eds.), John Willey and Sons, New York, NY,. 107–132.

    Google Scholar 

  92. Dushenkov, S., Mikheev, A., Prokhnevsky, A., Ruchko, M., and Sorochinsky, B. (1999) Phytoremediation of radiocesium-contaminated soil in the vicinity of Chemobyl, Ukraine. Environ. Sci. Technol. 33, 469–475.

    Article  CAS  Google Scholar 

  93. Entry, J. A., Vance, N. C., Hamilton, M. A., Zabowski, D., Watrud, L. S., and Adriano, D. C. (1996) Phytoremediation of soil contaminated with low concen-trations of radionuclides. Water, Air, Soil Pollut. 88, 167–176.

    CAS  Google Scholar 

  94. Broadley, M. R. and Willey, N. J. (1997) Differences in root uptake of radio-cesium by 30 plant taxa. Environ. Pollut. 97, 11–15.

    Article  CAS  Google Scholar 

  95. Buysse, J., vande Den-Brande, K., and Merckx, R. (1996) Genetypic differences in the distribution of radiocaesium in plants. Plant Soil 178, 265–271.

    Article  CAS  Google Scholar 

  96. Entry, J. A., Rygiewicz, P. T., and Emmingham, W. H. (1993) Accumulation of cesium 137 and strontium-90 in Ponderosa and Monterey pine seedlings. J. Environ. Qual. 22, 742–745.

    Article  CAS  Google Scholar 

  97. Lasat, M. M., Fuhrmann, M., Ebbs, S. D., Cornish, J. E., and Kochian, L. V. (1998) Phytoremediation of a radiocesium-contaminated soils: evaluation of cesium-137 bioaccumulation in the shoots of three plant species. J. Environ. Qual. 27, 165–169.

    Article  CAS  Google Scholar 

  98. Lasat, M. M., Norvell, W. A., and Kochian, L. V. (1997) Potential for phytoextrac-tion of 137 Cs from a contaminated soil. Plant Soil 195, 99–106.

    Article  CAS  Google Scholar 

  99. Salt, C. A. and Mayes, R. W. (1991) Seasonal variations in radiocaesium uptake by reseeded hill pasture grazed at different intensities by sheep. J. of App. Ecol. 28, 947–962.

    Article  Google Scholar 

  100. Salt, C. and Mayes, R. B. (1990) Seasonal patterns of 134 Cs uptake into hill pasture vegetation. In: Transfer of Radionuclides in Natural and Semi-natural Environ-ments, (Desmet, G., Nassimbeni, P., and Belli, M., eds.), Elsevier Applied Science, London, UK,.334–340.

    Google Scholar 

  101. Mascanzoni, D. (1990) Uptake of 90 Sr and 137 Cs by mushroom following the Chernobyl accident. In: Transfer of Radionuclides in Natural and Semi-natural Environments, (Desmet, G., Nassimbeni, P., and Belli, M.,eds.), Elsevier Applied Science, London, UK, 459–467.

    Google Scholar 

  102. Sawidis, T. (1988) Uptake of radionuclides by plants after the Chernobyl acci-dent. Environ. Pollut. 50, 317–324.

    Article  CAS  Google Scholar 

  103. Coughtrey, P. J., Jackson, D., and Thorne, M. C. (eds.) (1983) Radionuclide Distribution and Transport in Terrestrial and Aquatic Ecosystems, Vol. 1. A. A. Balkema, Rotterdam (for CEC), 1–496.

    Google Scholar 

  104. Wallace, A. and Romney, E. M. (1972) Radioecology and Ecophysiology of Desert Plants at the Nevada Test Site. Environmental Radiation Division, Laboratory of Nuclear Medicine University of California, Riverside, CA, 432.

    Google Scholar 

  105. Tang, S. R. and Willey, N. J. (2003) Uptake of 134 Cs by four species from the Asteraceae and two species from the Chenopodiaceae grown in two types of Chinese soil. Plant Soil 250, 75–81.

    Article  CAS  Google Scholar 

  106. Zhu, Y. Y. and Qiu, T. C. (1991) The behaviors of the fission products 90 Sr, 137 Cs, and 144 Ce in the soil-plant system. China Environ. Sci. 11, 266–269.

    CAS  Google Scholar 

  107. Wang, R. L., Yi, S., Cheng, K. G., and Zhang, X. T. (2002) 24, 73–77.

    Google Scholar 

  108. Tang, S. R., Chen, Z. Y., Li, H. Y., and Zheng, J. M. (2003) Uptake of 134 Cs in the shoots of Amaranthus tricolor and Amaranthus cruentus. Environ. Pollut. 125, 305–312.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the Ministry of Science and Technology, P. R. China (Grant Number: NKBRSFG 1999011808) and by a Leverhulme Trust, UK, Research Fellowship.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Tang, S. (2007). Phytoremediation in China. In: Willey, N. (eds) Phytoremediation. Methods in Biotechnology, vol 23. Humana Press. https://doi.org/10.1007/978-1-59745-098-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-098-0_25

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-541-5

  • Online ISBN: 978-1-59745-098-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics