Skip to main content

Phytoremediation With Living Aquatic Plants

Development and Modeling of Experimental Observations

  • Protocol
Phytoremediation

Part of the book series: Methods in Biotechnology ((MIBT,volume 23))

Abstract

This chapter provides a summary of the mathematical analysis and experimental design of laboratory measurements of the bioremoval potential for living aquatic plants. This process is called phytoremediation, bioremoval, biosorption, or bioaccumulation. The mathematical models are based on the concept of the conservation of mass and include descriptive equations, including adsorption of the metal onto living and growing biomass. The models describe the concentration of metal in solution as a function of time. An example case from previously published data is included to demonstrate the use of the models. The results from the mathematical models can be used to scale up a process, or to answer questions of how long to run an experiment, how much biomass material is required, what the expected level of removal is, and to help set benchmarks to determine how well a process is working. In addition to presenting model equations, a summary of experimental considerations, such as statistical design, choice of variables, and result quantification has been included. The information provided allows good experimental data to be collected such that a maximum amount of information is obtained with the minimum amount of effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muramoto, S. and Oki, Y. (1993) Removal of some heavy metals from polluted water by water hyacinth. Bull. Envir. Contam. Toxic 30, 170–177.

    Article  Google Scholar 

  2. Axtell, N. A., Sternberg, S. P. K., and Claussen, K. (2003) Lead and nickel removal using microspora and Lemna minor. Bioresource Technol. 89, 41–48.

    Article  CAS  Google Scholar 

  3. Sobhan, R. (1997) Cadmium Removal Using Living Aquatic Plants. MS thesis, University of North Dakota, Grand Forks, ND.

    Google Scholar 

  4. Haq, N. (1998) In-situ Bioremediation of Aqueous Lead and Cadmium Using Plants. MS thesis, University of North Dakota, Grand Forks, ND.

    Google Scholar 

  5. Dorn, R. (1998) Cadmium Removal Using Chladophora in a Flow Reactor. MS thesis, University of North Dakota, Grand Forks, ND.

    Google Scholar 

  6. Gardea-Torresdey, J. L., Gonzalez, J. H., Tiemann, K. J., and Rodriguez, O. (1998) Biosorption of cadmium, chromium, lead, and zinc by biomass of Medicago sativa (Alfalfa). J. Haz. Mat. 57, 29–39.

    Article  CAS  Google Scholar 

  7. Kratachvil, D. and Volesky, B. (1998) Advances in the biosorption of heavy metals. Trends Biotechnol. 16, 291–300.

    Article  Google Scholar 

  8. Adou, C. (1999) Bioremediation of Zinc and Nickel Using Living Aquatic Plants. MS thesis, University of North Dakota, Grand Forks, ND.

    Google Scholar 

  9. Roditi, X., Hudson, A., Fisher, X., Nicholas, S., Sanudo-Wilhelmy, and Sergio A. (2000) Field testing a metal bioaccumulation model for zebra mussels. Environ. Sci. Technol. 34, 2817–2825.

    Article  CAS  Google Scholar 

  10. Omar, H. H. (2002) Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. Internat. Biodet. Biodeg. 50, 95–100.

    Article  CAS  Google Scholar 

  11. Dursun, A. Y., Uslu, G., Tepe, O., Cuci, Y., and Ekiz, H. I. (2003) A comparative investigation on the bioaccumulation of heavy metal ions by growing Rhizopus arrhizus and Aspergillus niger. Biochem. Eng. J. 15, 87–92.

    CAS  Google Scholar 

  12. Kim, I.-S., Kang, K.-H, Johnson-Green, P., and Lee, E.-J. (2003) Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ. Pollut. 126, 235–243.

    Article  CAS  Google Scholar 

  13. Gupta, M. and Chandra, P. (1998) Bioaccumulation and toxicity of mercury in rooted-submerged macrophyte Vallisneria spiralis. Environ. Pollut. 103, 327–332.

    Article  CAS  Google Scholar 

  14. Theegala, C. S., Robertson, C., Carriere, P. E., and Suleiman, A. A. (2001) Phytoremediation potential and toxicity of barium to three freshwater microalgae: Scenedesmus subspicatus, Selenastrum capricorntum, and Nannochloropsis sp. Prac. Per. Haz. Tox. Radioac. Waste Manag. 5, 194–202.

    Article  CAS  Google Scholar 

  15. Foster, P. (1976) Concentrations and concentration factors of heavy metals in brown algae. Environ. Pollut. 10, 45–53.

    Article  CAS  Google Scholar 

  16. Wang, H. K. and Wood, J. M. (1984) Bioaccumulation of nickel by algae. Environ. Sci. Technol. 18, 106–109.

    Article  CAS  Google Scholar 

  17. Maine, M. A., Sune, N.L., and Lagger, S.C. (2004) Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Res. 38, 1494–1501.

    Article  CAS  Google Scholar 

  18. Konhauser, K. O. and Fyfe, W. S. (1991) Biogeochemical cycling of metals on freshwater algae from Manaus and Carajas, Brazil. Biorecovery 595–608.

    Google Scholar 

  19. Roy, D., Greenlaw, P. N., and Shane, B. S. (1992) Adsorption of heavy metals by green algae. J. Environ. Sci. Health, A28, 37–50.

    Google Scholar 

  20. Chen, C. Y. and Folt, C. L. (2000) Bioaccumulation and diminution of arsenic and lead in freshwater food web. Environ. Sci. Technol. 34, 3878–3884.

    Article  CAS  Google Scholar 

  21. Saeed, N. and Muhammed, I. (2003) Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arietinum). Water Res. 37, 3472–3480.

    Article  CAS  Google Scholar 

  22. United States Environmental Protection Agency (1990) Removal and recovery of metal ions from groundwater. Superfund innovative technology evaluation. EPA/540/S5-90/005 and EPA/540/F-92/003.

    Google Scholar 

  23. Ngo, V. (1995) Lemna solves algae problems in Ashland Chemical Polishing Ponds, Lemna USA, Inc. Treater’s Digest, 3.

    Google Scholar 

  24. Dirilgen, N. (1998) Effects of pH and chelator EDTA on Cr toxicity and accumulation in Lemna minor. Chemosphere 37, 771–783.

    Article  CAS  Google Scholar 

  25. Remoudaki, E., Hatzikioseyian, A., Kousi, P., and Tsezos, M. (2003) The mechanism of metals precipitation by biologically generated alkalinity in biofilm reactors. Water Res. 37, 3843–3854.

    Article  CAS  Google Scholar 

  26. Aksu, Z., Ozer, D., Ozer, A., Kutsal, T., and Caglar, A. (1998) Investigation of the column performance of cadmium (II) biosorption by Cladophora crispate flocs in a packed bed. Separ. Sci. Technol. 33, 667–682.

    Article  CAS  Google Scholar 

  27. Sobhan, R. and Sternberg, S. P. K. (1999) Cadmium removal using Cladophora. J. Environ. Sci. Health A34, 53–72.

    Article  CAS  Google Scholar 

  28. Sternberg, S. P. K. and Dorn, R. (2002) Cadmium removal using Cladophora in batch, semi-batch and flow reactors. Bioresource Technol. 81, 249–255.

    Article  CAS  Google Scholar 

  29. Fogler, H. S. (1999) Elements of Chemical Reaction Engineering, 3rd ed. Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  30. Incropera, F. P. and Dewitt, D. P. (1996) Fundamentals of Heat and Mass Transfer, 4th ed. Wiley, New York, NY.

    Google Scholar 

  31. Kuhn, D. J. (1969) The duckweed. The American Biology Teacher 31, 328–329.

    Google Scholar 

  32. Hillman, W. S. and Culley, D. D., Jr. (1978) The uses of duckweed. American Scientist 66, 442–451.

    Google Scholar 

  33. Dodds, W. K. and Gudder, D. A. (1992) The ecology of Cladophora. J. Phycol. 28, 415–427.

    Article  Google Scholar 

  34. Rahmani, N. and Sternberg, S. P. K. (1999) Bioremoval of lead using Lemna minor. Bioresource Technol. 70, 225–230.

    Article  CAS  Google Scholar 

  35. Murray, J. D. (1989) Mathematical Biology. Springer-Verlag, New York, NY.

    Google Scholar 

  36. Eaton, A. D., Clesceri, L. S., and Greenberg, A. E. (1995) Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, DC.

    Google Scholar 

  37. Keppel, G. (1982) Design and Analysis: A Researcher’s Handbook. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  38. Lawson, J. and Erjavec, J. (1998) Modern Statistics for Engineering and Quality Improvement. University of North Dakota, Grand Forks, ND.

    Google Scholar 

  39. Berger, P. D. and Maurer, R. E. (2002) Experimental Design. Duxbury, Thomas Learning, Inc., Belmont CA.

    Google Scholar 

  40. Sall, J., Lehman, A., and Creighton, L. (2000) JMP Start Statistics, 2000 2nd ed. Sas Institute Inc., Brooks Cole.

    Google Scholar 

  41. Ryan, B. F. and Joiner, B. L. (2000) MINITAB; Handbook 4th ed. Brooks Cole.

    Google Scholar 

  42. Tsezos, M. (1984) Recovery of uranium from biological adsorbents: desorption equilibrium. Biotechnol. Bioeng. 26, 973–981.

    Article  CAS  Google Scholar 

  43. Sakaguchi, T., Nakajima, A., Honma, S., Aoyama, M., and Kasai, A. (1996) Recovery and removal of uranium by hardwood barks. Resource Environ. Biotechnol. 1, 129–143.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Sternberg, S.P.K. (2007). Phytoremediation With Living Aquatic Plants. In: Willey, N. (eds) Phytoremediation. Methods in Biotechnology, vol 23. Humana Press. https://doi.org/10.1007/978-1-59745-098-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-098-0_16

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-541-5

  • Online ISBN: 978-1-59745-098-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics