Advertisement

Isolation and Manipulation of Mammalian Neural Stem Cells In Vitro

  • Claudio GiachinoEmail author
  • Onur Basak
  • Verdon Taylor
Part of the Methods in Molecular Biology book series (MIMB, volume 482)

Abstract

Neural stem cells are potentially a source of cells not only for replacement therapy but also as drug vectors, bringing bioactive molecules into the brain. Stem cell-like cells can be isolated readily from the human brain, thus, it is important to find culture systems that enable expansion in a multipotent state to generate cells that are of potential use for therapy. Currently, two systems have been described for the maintenance and expansion of multipotent progenitors, an adhesive substrate bound and the neurosphere culture. Both systems have pros and cons, but the neurosphere may be able to simulate the three-dimensional environment of the niche in which the cells reside in vivo. Thus, the neurosphere, when used and cultured appropriately, can expand and provide important information about the mechanisms that potentially control neural stem cells in vivo.

Key words

Neural stem cells embryonic neurogenesis adult neurogenesis Notch signaling neurosphere differentiation 

References

  1. 1.
    Temple, S. (2001) Stem cell plasticity – building the brain of our dreams, Nat Rev Neurosci 2, 513–520.CrossRefPubMedGoogle Scholar
  2. 2.
    Alvarez-Buylla, A., and Lim, D. A. (2004) For the long run: maintaining germinal niches in the adult brain, Neuron 41, 683–686.CrossRefPubMedGoogle Scholar
  3. 3.
    Alvarez-Buylla, A., Garcia-Verdugo, J. M., and Tramontin, A. D. (2001) A unified hypothesis on the lineage of neural stem cells, Nat Rev Neurosci 2, 287–293.CrossRefPubMedGoogle Scholar
  4. 4.
    Reynolds, B. A., and Weiss, S. (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell, Dev Biol 175, 1–13.CrossRefPubMedGoogle Scholar
  5. 5.
    Reynolds, B. A., and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system, Science 255, 1707–1710.CrossRefPubMedGoogle Scholar
  6. 6.
    Artavanis-Tsakonas, S., Matsuno, K., and Fortini, M. E. (1995) Notch signaling, Science 268, 225–232.CrossRefPubMedGoogle Scholar
  7. 7.
    Artavanis-Tsakonas, S., Rand, M. D., and Lake, R. J. (1999) Notch signaling: cell fate control and signal integration in development, Science 284, 770–776.CrossRefPubMedGoogle Scholar
  8. 8.
    Kimble, J., and Simpson, P. (1997) The LIN-12/Notch signaling pathway and its regulation, Annu Rev Cell Dev Biol 13, 333–361.CrossRefPubMedGoogle Scholar
  9. 9.
    Heitzler, P., and Simpson, P. (1991) The choice of cell fate in the epidermis of Drosophila, Cell 64, 1083–1092.CrossRefPubMedGoogle Scholar
  10. 10.
    Heitzler, P., Bourouis, M., Ruel, L., Carteret, C., and Simpson, P. (1996) Genes of the Enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila, Development 122, 161–171.PubMedGoogle Scholar
  11. 11.
    Robey, E. (1997) Notch in vertebrates, Curr Opin Genet Dev 7, 551–557.CrossRefPubMedGoogle Scholar
  12. 12.
    Lendahl, U. (1998) A growing family of Notch ligands, Bioessays 20, 103–107.CrossRefPubMedGoogle Scholar
  13. 13.
    Kopan, R., and Goate, A. (2000) A common enzyme connects notch signaling and Alzheimer's disease, Genes Dev 14, 2799–2806.CrossRefPubMedGoogle Scholar
  14. 14.
    Chan, Y. M., and Jan, Y. N. (1998) Roles for proteolysis and trafficking in notch maturation and signal transduction, Cell 94, 423–426.CrossRefPubMedGoogle Scholar
  15. 15.
    Selkoe, D. J. (2001) Presenilin, Notch, and the genesis and treatment of Alzheimer’s disease, Proc Natl Acad Sci U S A 98, 11039–11041.CrossRefPubMedGoogle Scholar
  16. 16.
    Bertrand, N., Castro, D. S., and Guillemot, F. (2002) Proneural genes and the specification of neural cell types, Nat Rev Neurosci 3, 517–530.CrossRefPubMedGoogle Scholar
  17. 17.
    Lutolf, S., Radtke, F., Aguet, M., Suter, U., and Taylor, V. (2002) Notch1 is required for neuronal and glial differentiation in the cerebellum, Development 129, 373–385.PubMedGoogle Scholar
  18. 18.
    Hitoshi, S., Tropepe, V., Ekker, M., and van der Kooy, D. (2002) Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain, Development 129, 233–244.PubMedGoogle Scholar
  19. 19.
    de la Pompa, J. L., Wakeham, A., Correia, K. M., Samper, E., Brown, S., Aguilera, R. J., Nakano, T., Honjo, T., Mak, T. W., Rossant, J., and Conlon, R. A. (1997) Conservation of the Notch signalling pathway in mammalian neurogenesis, Development 124, 1139–1148.PubMedGoogle Scholar
  20. 20.
    Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells, Neuron 36, 1021–1034.CrossRefPubMedGoogle Scholar
  21. 21.
    Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain, Cell 97, 703–716.CrossRefPubMedGoogle Scholar
  22. 22.
    Doetsch, F. (2003) The glial identity of neural stem cells, Nat Neurosci 6, 1127–1134.CrossRefPubMedGoogle Scholar
  23. 23.
    Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., and Kriegstein, A. R. (2001) Neurons derived from radial glial cells establish radial units in neocortex, Nature 409, 714–720.CrossRefPubMedGoogle Scholar
  24. 24.
    Malatesta, P., Hartfuss, E., and Gotz, M. (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage, Development 127, 5253–5263.PubMedGoogle Scholar
  25. 25.
    Nyfeler, Y., Kirch, R. D., Mantei, N., Leone, D. P., Radtke, F., Suter, U., and Taylor, V. (2005) Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal, Embo J 24, 3504–3515.CrossRefPubMedGoogle Scholar
  26. 26.
    Singec, I., Knoth, R., Meyer, R. P., Maciaczyk, J., Volk, B., Nikkhah, G., Frotscher, M., and Snyder, E. (2006) Defining the actual sensitivity and specificity of the neurosphere assay in stemcell biology, Nature Methods 3, 801–806.CrossRefPubMedGoogle Scholar
  27. 27.
    Gaiano, N., Nye, J. S., and Fishell, G. (2000) Radial glial identity is promoted by Notch1 signaling in the murine forebrain, Neuron 26, 395–404.CrossRefPubMedGoogle Scholar
  28. 28.
    Gaiano, N., Kohtz, J. D., Turnbull, D. H., and Fishell, G. (1999) A method for rapid gain-of-function studies in the mouse embryonic nervous system, Nat Neurosci 2, 812–819.CrossRefPubMedGoogle Scholar
  29. 29.
    Shimizu, K., Chiba, S., Kumano, K., Hosoya, N., Takahashi, T., Kanda, Y., Hamada, Y., Yazaki, Y., and Hirai, H. (1999) Mouse jagged1 physically interacts with notch2 and other notch receptors. Assessment by quantitative methods, J Biol Chem 274, 32961–32969.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Molecular EmbryologyMax Planck Institute of ImmunobiologyGermany

Personalised recommendations