Ex Vivo Generation of Human Red Blood Cells: A New Advance in Stem Cell Engineering

  • Luc Douay
  • Marie-Catherine Giarratana
Part of the Methods in Molecular Biology book series (MIMB, volume 482)


We describe a technological approach permitting the massive expansion of CD34+ stem cells and their 100% conversion ex vivo into mature red blood cells (RBC). The protocol comprises three steps: a first step consisting of cell proliferation and induction of erythroid differentiation in a liquid medium without serum in the presence of growth factors (GF), a second based on a model reconstitution of the medullar microenvironment (ME) (human MSC or murine stromal cells) in the presence of GF, and a third in the presence of the ME alone, without any GF. This work highlights the impact of the ex vivo microenvironment on the terminal maturation of erythroid cells. A critical point is that the RBC generated in vitro have all the characteristics of functional native adult RBC. Moreover, this new concept of ‘cultured RBC’ (cRBC) is important for basic research into terminal erythropoiesis and has major clinical implications, especially in transfusion medicine. The three-step protocol can be adapted to use hematopoietic stem cells (HSC) from diverse sources: peripheral blood, bone marrow or cord blood.

Key words

Hematopoietic stem cells CD34+ cells erythroid culture terminal differentiation in vitro red blood cell (RBC) production stromal cells three-step protocol functional cultured RBC 


  1. 1.
    Lemischka, I. R. (1997) Microenvironmental regulation of hematopoietic stem cells. Stem Cells 15 Suppl 1, 63–68.CrossRefPubMedGoogle Scholar
  2. 2.
    Ogawa, M. (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81, 2844–2853.PubMedGoogle Scholar
  3. 3.
    Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., Panasuk, A. F., Rudakowa, S. F., Luria, E. A., et al. (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2, 83–92.PubMedGoogle Scholar
  4. 4.
    Verfaillie, C. M. (1993) Soluble factor(s) produced by human bone marrow stroma increase cytokine-induced proliferation and maturation of primitive hematopoietic progenitors while preventing their terminal differentiation. Blood 82, 2045–2053.PubMedGoogle Scholar
  5. 5.
    Freyssinier, J. M., Lecoq-Lafon, C., Amsellem, S., Picard, F., Ducrocq, R., Mayeux, P., et al. (1999) Purification, amplification and characterization of a population of human erythroid progenitors. Br J Haematol 106, 912–922.CrossRefPubMedGoogle Scholar
  6. 6.
    Zermati, Y., Fichelson, S., Valensi, F., Freyssinier, J. M., Rouyer-Fessard, P., Cramer, E., et al. (2000) Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp Hematol 28, 885–894.CrossRefPubMedGoogle Scholar
  7. 7.
    Bessis, M. (1958) Erythroblastic island, functional unity of bone marrow. Rev Hematol 13, 8–11.PubMedGoogle Scholar
  8. 8.
    Lichtman, M. A. (1981) The ultrastructure of the hemopoietic environment of the marrow: a review. Exp Hematol 9, 391–410.PubMedGoogle Scholar
  9. 9.
    Qiu, L. B., Dickson, H., Hajibagheri, N., Crocker, P. R. (1995) Extruded erythroblast nuclei are bound and phagocytosed by a novel macrophage receptor. Blood 85, 1630–1639.PubMedGoogle Scholar
  10. 10.
    Neildez-Nguyen, T. M., Wajcman, H., Marden, M. C., Bensidhoum, M., Moncollin, V., Giarratana, M. C., et al. (2002) Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat Biotechnol 20, 467–472.CrossRefPubMedGoogle Scholar
  11. 11.
    Giarratana, M. C., Kobari, L., Lapillonne, H., Chalmers, D., Kiger, L., Cynober, T., et al. (2005) Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 23, 69–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Dolznig, H., Habermann, B., Stangl, K., Deiner, E. M., Moriggl, R., Beug, H., et al. (2002) Apoptosis protection by the Epo target Bcl-XL allows factor-independent differentiation of primary erythroblasts. Curr Biol 12, 1076–1085.CrossRefPubMedGoogle Scholar
  13. 13.
    Suzuki, J., Fujita, J., Taniguchi, S., Sugimoto, K., Mori, K. J. (1992) Characterization of murine hemopoietic-supportive (MS-1 and MS-5) and non-supportive (MS-K) cell lines. Leukemia 6, 452–458.PubMedGoogle Scholar
  14. 14.
    Prockop, D. J. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74.CrossRefPubMedGoogle Scholar
  15. 15.
    Petzer, A. L., Zandstra, P. W., Piret, J. M., Eaves, C. J. (1996) Differential cytokine effects on primitive (CD34+CD38) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin. J Exp Med 183, 2551–2558.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Luc Douay
    • 1
  • Marie-Catherine Giarratana
    • 2
  1. 1.Unité de recherché, Faculté de Médecine, Université Pierre et Marie CurieFrance
  2. 2.Service d’Hématologie Biologique, Assistance Publique Hôpitaux de Paris, Hôpital Armand TrousseauFrance

Personalised recommendations