Advertisement

Islet-Derived Progenitors as a Source of In Vitro Islet Regeneration

  • Stephen Hanley
  • Lawrence Rosenberg
Part of the Methods in Molecular Biology book series (MIMB, volume 482)

Abstract

Current therapies do not prevent the complications of diabetes. Furthermore, these therapies do not address the underlying pathology; the lack of functional β-cell mass that occurs in both types 1 and 2 diabetes. While pancreas and islet transplantation do serve to increase β-cell mass, a lack of donor organs limits the therapeutic potential of these treatments. As such, expansion of β-cell mass from endogenous sources, either in vivo or in vitro, represents an area of increasing interest. One potential source of islet progenitors is the islet proper, via the dedifferentiation, proliferation, and redifferentiation of facultative progenitors residing within the islet. We have developed a tissue culture platform whereby isolated adult human pancreatic islets form proliferative duct-like structures expressing ductal and progenitor markers. Short-term treatment with a peptide fragment of islet neogenesis-associated protein (INGAP) induces these structures to reform islet-like structures that resemble freshly isolated islets with respect to the frequency and distribution of the four endocrine cell types, islet gene expression and hormone production, insulin content, and glucose-responsive insulin secretion. As such, the plasticity of adult human islets has significant implications for islet regeneration.

Key words

Dedifferentiation islet islet neogenesis-associated protein (INGAP) progenitor redifferentiation 

References

  1. 1.
    Atkinson, M. A. and Eisenbarth, G. S. (2001) Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358, 221–229.CrossRefPubMedGoogle Scholar
  2. 2.
    Butler, A. E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R. A., and Butler, P. C. (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102–110.CrossRefPubMedGoogle Scholar
  3. 3.
    Shapiro, A. M., Lakey, J. R., Ryan, E. A., Korbutt, G. S., Toth, E., Warnock, G. L., Kneteman, N. M., and Rajotte, R. V. (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Eng J Med 343, 230–238.CrossRefGoogle Scholar
  4. 4.
    Dor, Y., Brown, J., Martinez, O. I., and Melton, D. A. (2004) Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46.CrossRefPubMedGoogle Scholar
  5. 5.
    Bonner-Weir, S., Baxter, L. A., Schuppin, G. T., and Smith, F. E. (1993) A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 42, 1715–1720.CrossRefPubMedGoogle Scholar
  6. 6.
    Rosenberg, L., Brown, R. A., and Duguid, W. P. (1983) A new approach to the induction of duct epithelial hyperplasia and nesidioblastosis by cellophane wrapping of the hamster pancreas. J Surg Res 35, 63–72.CrossRefPubMedGoogle Scholar
  7. 7.
    Gu, G., Dubauskaite, J., and Melton, D. A. (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457.PubMedGoogle Scholar
  8. 8.
    Heremans, Y., Van De Casteele, M., in't Veld, P., Gradwohl, G., Serup, P., Madsen, O., Pipeleers, D., and Heimberg, H. (2002) Recapitulation of embryonic neuroendocrine differentiation in adult human pancreatic duct cells expressing neurogenin 3. J Cell Biol 159, 303–312.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang, R. N., Kloppel, G., and Bouwens, L. (1995) Duct- to islet-cell differentiation and islet growth in the pancreas of duct-ligated adult rats. Diabetologia 38, 1405–1411.CrossRefPubMedGoogle Scholar
  10. 10.
    Rooman, I., Lardon, J., and Bouwens, L. (2002) Gastrin stimulates beta-cell neogenesis and increases islet mass from transdifferentiated but not from normal exocrine pancreas tissue. Diabetes 51, 686–690.CrossRefPubMedGoogle Scholar
  11. 11.
    Lipsett, M. and Finegood, D. T. (2002) Beta-cell neogenesis during prolonged hyperglycemia in rats. Diabetes 51, 1834–1841.CrossRefPubMedGoogle Scholar
  12. 12.
    Fernandes, A., King, L. C., Guz, Y., Stein, R., Wright, C. V., and Teitelman, G. (1997) Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets. Endocrinology 138, 1750–1762.CrossRefPubMedGoogle Scholar
  13. 13.
    Guz, Y., Nasir, I., and Teitelman, G. (2001) Regeneration of pancreatic beta cells from intra-islet precursor cells in an experimental model of diabetes. Endocrinology 142, 4956–4968.CrossRefPubMedGoogle Scholar
  14. 14.
    Zulewski, H., Abraham, E. J., Gerlach, M. J., Daniel, P. B., Moritz, W., Muller, B., Vallejo, M., Thomas, M. K., and Habener, J. F. (2001) Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50, 521–533.CrossRefPubMedGoogle Scholar
  15. 15.
    Dor, Y. (2006) Beta-cell proliferation is the major source of new pancreatic beta cells. Nat Clin Pract Endocrinol Metab 2, 242–243.CrossRefPubMedGoogle Scholar
  16. 16.
    Jamal, A. M., Lipsett, M., Sladek, R., Laganiere, S., Hanley, S., and Rosenberg, L. (2005) Morphogenetic plasticity of adult human pancreatic islets of Langerhans. Cell Death Differ 12, 702–712.CrossRefPubMedGoogle Scholar
  17. 17.
    Gao, R., Ustinov, J., Korsgren, O., and Otonkoski, T. (2005) In vitro neogenesis of human islets reflects the plasticity of differentiated human pancreatic cells. Diabetologia 48, 2296–2304.CrossRefPubMedGoogle Scholar
  18. 18.
    Xu, G., Stoffers, D. A., Habener, J. F., and Bonner-Weir, S. (1999) Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48, 2270–2276.CrossRefPubMedGoogle Scholar
  19. 19.
    Tourrel, C., Bailbe, D., Meile, M. J., Kergoat, M., and Portha, B. (2001) Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes 50, 1562–1570.CrossRefPubMedGoogle Scholar
  20. 20.
    Xu, G., Kaneto, H., Lopez-Avalos, M. D., Weir, G. C., and Bonner-Weir, S. (2006) GLP-1/exendin-4 facilitates beta-cell neogenesis in rat and human pancreatic ducts. Diabetes Res Clin Pract in press.Google Scholar
  21. 21.
    Brand, S. J., Tagerud, S., Lambert, P., Magil, S. G., Tatarkiewicz, K., Doiron, K., and Yan, Y. (2002) Pharmacological treatment of chronic diabetes by stimulating pancreatic beta-cell regeneration with systemic co-administration of EGF and gastrin. Pharmacol Toxicol 91, 414–420.CrossRefPubMedGoogle Scholar
  22. 22.
    Suarez-Pinzon, W. L., Yan, Y., Power, R., Brand, S. J., and Rabinovitch, A. (2005) Combination therapy with epidermal growth factor and gastrin increases beta-cell mass and reverses hyperglycemia in diabetic NOD mice. Diabetes 54, 2596–2601.CrossRefPubMedGoogle Scholar
  23. 23.
    Rosenberg, L., Lipsett, M., Yoon, J. W., Prentki, M., Wang, R., Jun, H. S., Pittenger, G. L., Taylor-Fishwick, D., and Vinik, A. I. (2004) A pentadecapeptide fragment of islet neogenesis-associated protein increases beta-cell mass and reverses diabetes in C57BL/6 J mice. Ann Surg 240, 875–884.CrossRefPubMedGoogle Scholar
  24. 24.
    Lipsett, M., Hanley, S., Castellarin, M., Austin, E., Suarez-Pinzon, W. L., Rabinovitch, A., and Rosenberg, L. (submitted) The role of islet neogenesis-associated protein (INGAP) in islet neogenesis. Cell Biochem Biophys. Google Scholar
  25. 25.
    Jamal, A. M., Lipsett, M., Hazrati, A., Paraskevas, S., Agapitos, D., Maysinger, D., and Rosenberg, L. (2003) Signals for death and differentiation: a two-step mechanism for in vitro transformation of adult islets of Langerhans to duct epithelial structures. Cell Death Differ 10, 987–996.CrossRefPubMedGoogle Scholar
  26. 26.
    Richards, J., Larson, L., Yang, J., Guzman, R., Tomooka, Y., Osborn, R., Imagawa, W., and Nandi, S. (1983) Method for culturing mammary epithelial cells in a rat tail collagen gel matrix. Journal of Tissue Culture Methods 8, 31–36.CrossRefGoogle Scholar
  27. 27.
    Gershengorn, M. C., Hardikar, A. A., Wei, C., Geras-Raaka, E., Marcus-Samuels, B., and Raaka, B. M. (2004) Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306, 2261–2264.CrossRefPubMedGoogle Scholar
  28. 28.
    Bonner-Weir, S., Taneja, M., Weir, G. C., Tatarkiewicz, K., Song, K. H., Sharma, A., and O'Neil, J. J. (2000) In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci 97, 7999–8004.CrossRefPubMedGoogle Scholar
  29. 29.
    Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Stephen Hanley
    • 1
  • Lawrence Rosenberg
    • 2
  1. 1.Department of Surgery, and Centre for Pancreatic DiseasesMcGill University Health CentreMontrealCanada
  2. 2.Department of SurgeryMcGill University and Centre for Pancreatic Diseases, McGill University Health CentreMontrealCanada

Personalised recommendations