Derivation and Manipulation of Murine Embryonic Stem Cells

  • Alexander Meissner
  • Sarah Eminli
  • Rudolf Jaenisch
Part of the Methods in Molecular Biology book series (MIMB, volume 482)


Pluripotent embryonic stem (ES) cell lines were first isolated over 25 years ago and remain an essential tool in molecular and developmental biology to this day. In particular, the use of homologous recombination and subsequent generation of ES-derived mice has greatly facilitated research across all fields. Moreover, ES cells represent an extremely attractive model to study events in early development. In this chapter, we will describe the derivation and propagation of murine ES cells. This is followed by a description of targeting ES cells and a protocol for the generation of mice by diploid and tetraploid blastocyst injections.

Key words

Embryonic stem cells pluripotency homologous recombination 


  1. 1.
    Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 1981. 78(12): p. 7634–8.Google Scholar
  3. 3.
    Bradley, A., et al., Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 1984. 309(5965): p. 255–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Solter, D., From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet, 2006. 7(4): p. 319–27.CrossRefPubMedGoogle Scholar
  5. 5.
    Nichols, J., et al., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998. 95(3): p. 379–91.CrossRefPubMedGoogle Scholar
  6. 6.
    Mitsui, K., et al., The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003. 113(5): p. 631–42.CrossRefPubMedGoogle Scholar
  7. 7.
    Chambers, I., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003. 113(5): p. 643–55.CrossRefPubMedGoogle Scholar
  8. 8.
    Smith, A.G., et al., Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 1988. 336(6200): p. 688–90.CrossRefPubMedGoogle Scholar
  9. 9.
    Boiani, M. and H.R. Scholer, Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol, 2005. 6(11): p. 872–84.CrossRefPubMedGoogle Scholar
  10. 10.
    Strelchenko, N., et al., Morula-derived human embryonic stem cells. Reprod Biomed Online, 2004. 9(6): p. 623–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Tesar, P.J., Derivation of germ-line-competent embryonic stem cell lines from preblastocyst mouse embryos. Proc Natl Acad Sci USA, 2005. 102(23): p. 8239–44.Google Scholar
  12. 12.
    Chung, Y., et al., Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature, 2006. 439(7073): p. 216–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Zvetkova, I., et al., Global hypomethylation of the genome in XX embryonic stem cells. Nat Genet, 2005. 37(11): p. 1274–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Brook, F.A. and R.L. Gardner, The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci U S A, 1997. 94(11): p. 5709–12.Google Scholar
  15. 15.
    Buehr, M. and A. Smith, Genesis of embryonic stem cells. Philos Trans R Soc Lond B Biol Sci, 2003. 358(1436): p. 1397–402; discussion 1402.CrossRefPubMedGoogle Scholar
  16. 16.
    Thomas, K.R. and M.R. Capecchi, Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987. 51(3): p. 503–12.CrossRefPubMedGoogle Scholar
  17. 17.
    Eggan, K., et al., Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci U S A, 2001. 98(11): p. 6209–14.Google Scholar
  18. 18.
    Eggan, K., et al., Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nat Biotechnol, 2002. 20(5): p. 455–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Okano, M., et al., DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 1999. 99(3): p. 247–57.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alexander Meissner
    • 1
  • Sarah Eminli
    • 2
  • Rudolf Jaenisch
    • 3
  1. 1.Whitehead Institute for Biomedical ResearchMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Center for Regenerative Medicine and Cancer Center, Massachusetts General HospitalHarvard Medical School and Harvard Stem Cell InstituteBostonUSA
  3. 3.Whitehead Institute for Biomedical ResearchMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations